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Abstract  

All scientific reports regarding the electro-oxidation of CO on Pt, without exception, show 

that this reaction is favored on Pt surfaces rich in defects. In fact, “ordinary” or simple CO 

pre-oxidation is a typical process of surface defected catalysts, obeying the conditions of a full 

COads layer formed at suitably low potentials, such as those of the hydrogen under-potential 

deposition (HUPD) region. Among the Pt(111)-type surfaces, non-defected Pt(111) has the 

lowest catalytic activity for CO electro-oxidation. As a novelty, this paper reports that an 

unusual CO pre-oxidation appears on a non-defected Pt(111) surface, depending on the COads 

layer preparation, that is, for a COads layer prepared by cooling the flame annealed Pt(111) 

electrode in a CO atmosphere. The magnitude of this unusual CO pre-oxidation decreases as 

the Pt surface becomes rich in steps/defects, and using stepped surfaces, this unusual stage of 

CO electro-oxidation at low overpotentials is revealed to be connected with long-range order 

on the (111) plane. Interestingly, both “ordinary” and unusual CO pre-oxidations take place 

on the (111) terrace domains, but only “ordinary” CO pre-oxidation is favored on surfaces 

rich in defects. We propose a mechanism of indirect participation of the steps/defects in 

catalysis, according to which, at low overpotentials, steps/defects on the surface act as 

ingredients that can improve or inhibit the pathways for the CO electro-oxidation reaction, 

but do not serve as the most active sites themselves. Therefore, at least on extended platinum 
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surfaces, there is no general condition whereby surface steps/defects always favor the CO 

electro-oxidation reaction. From experiments at temperatures ranging from 283 to 313 K, the 

activation energies for unusual CO pre-oxidation and the main CO oxidation processes were 

about 108 and 117 kJ mol-1, respectively. Furthermore, it was found that the increase of the 

CO stripping temperature caused a proportionally greater reduction of the charge density of 

the CO electro-oxidation processes at low overpotentials, that is, the unusual CO pre-

oxidation, in comparison to the charge density of the oxidation of CO at the main peak (at 

higher overpotentials).  

 

Keywords: Electrocatalysis, Pt electrode, CO electro-oxidation, structure-activity correlation, 

active sites.  
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1. Introduction  

Defects, for entropic reasons, are ubiquitous on any real surface 1, 2, and can profoundly 

impact catalysis on solid surfaces. In fact, defects on the surfaces are typically factors at the 

molecular scale that can have profound impacts on the catalytic properties, which can be 

reflected in terms of both catalytic activity and selectivity 3. In heterogeneous electrocatalysis, 

reactants (typically a gas or liquid) and the catalyst (the surface of a solid) strongly interact at 

the electrified interface. This strong catalyst-adsorbate interaction implies that the catalytic 

performance frequently depends on the arrangement of the atoms at the topmost catalyst 

surface (and/or sub-surface) 4. A substantial amount of information is reported in the literature 

4, 5, with trends in the relationship between surface structure and catalytic activity having 

been observed for catalyzed redox reactions. An important issue of both academic and 

practical interest concerns the characterization of the roles (or functionalities) that surface 

defects can eventually play in (some) electro-catalyzed reactions on solid surfaces. The CO 

electro-oxidation reaction on well-ordered Pt surfaces, because it is a reaction that behaves as 

sensitive to the surface structure 4, is a suitable system for the development of this kind of 

investigation. This reaction is difficult to achieve over platinum, requiring high potentials in 

the region of 0.7 VRHE, while the thermodynamics provides a standard potential for the 

reaction CO(g) + H2O(l) ⇄ CO2(g) + 2H+ + 2e- of -0.104 VSHE, so the overpotential is ca. 0.8 V. 

However, despite this high overpotential, the reaction can occasionally start at low 

overpotential, in a process known as CO pre-oxidation, which is a characteristic process of 

defected surfaces 6 and is related, among other factors (as explained in detail below), to the 

conditions under which the COads layer was formed 6, 7. Hence, in the absence of surface 

defects, the Pt(111) basal plane is normally very inactive toward the CO electro-oxidation 

reaction 8. We prepared a layer of COads on non-defected Pt(111), with this poor catalyst 

becoming more active than the stepped surfaces based on that basal plane. This broadens the 

horizon of our understanding of the possible roles (or functionalities) that surface defects can 

play in the electrocatalysis of CO oxidation.  

Concerning the importance of the steps/defects on the surfaces, it is well documented 

that the electro-oxidation of CO is a surface structure sensitive reaction, in which (crystalline 

9 and/or random 10-12) defects on the surface are a beneficial ingredient for achieving high 

catalytic activities at low overpotentials 9-11. Studies using stepped Pt surfaces consisting of 

different width (111) terraces interrupted by (110) monoatomic steps have shown that the CO 



electro-oxidation reaction rate increases with increasing steps density, and that extrapolation 

of the reaction rate to a surface with zero defect density, equivalent to a perfect Pt(111) 

surface, closely corresponds to a negligible reaction rate 9. Although the reaction rate tends to 

zero as the steps or defects disappear from the catalyst surface, this trend alone does not reveal 

the true identity of the active sites or the most active sites involved in the reaction. Using 

stepped Pt surfaces, and marking specific sites with an isotopically labeled reaction 

intermediate 13, the characterization (in two-dimensions) of the most active sites confirmed 

that the steps/defects can modify the neighboring (111) terraces below the steps/defects, in a 

process related to the electronic charge separation between the top and bottom of the steps. 

Under these circumstances, new local conditions emerge in these (111) domains, which can 

improve or even inhibit specific reaction pathways at these locations. In the specific case of 

reaction pathways involving the electro-oxidation of COads on Pt(111)-type stepped surfaces, 

the modification of (111) domains by steps/defects culminates in the emergence of the very 

active sites on these “electronically modified” (111) facets 13. This is the most likely 

mechanism for indirect participation of the surface steps/defects in catalysis, whose beneficial 

action favors the electrocatalysis of CO oxidation on the (111) terraces of (extended) Pt 

surfaces. Therefore, experience has shown that a successful strategy to improve the 

electrocatalysis of CO oxidation on Pt is to introduce steps/defects on the catalyst surfaces. 

This is almost correct, but it does not always work, as will be discussed later 14. Interestingly, 

this makes the Pt/CO system very useful for serendipitous discovery, as occurred with the 

discovery of CO pre-oxidation 15.  

In CO stripping experiments, the CO pre-oxidation can be considered an ignition 

process that frequently appears as a voltammetric small wave in the early stage, or a pre-

ignition of the electro-oxidation reaction of the COads layer. When the pre-oxidation peak 

appears, it precedes one or more major oxidation peaks, and it is not difficult to differentiate 

between one and the other. However, in a quiescent CO saturated solution, when the CO pre-

oxidation is present 16, it can mix with the electro-oxidation of CO from the solution (also 

called bulk CO electro-oxidation), so it is not possible to differentiate one process from the 

other. Hence, it is important to study the CO pre-oxidation with control of the CO in the 

solution (including the absence of CO in the solution).  

In quantitative terms, depending on the orientation of the electrode surface, the charge 

corresponding to the CO pre-oxidation process does not exceed around 8% of the charge for 



electro-oxidation of a complete layer of COads. Since the CO pre-oxidation corresponds to a 

stage of CO electro-oxidation requiring low overpotentials, due to the reaction being surface 

structure sensitive, it seems logical that it should only involve the most catalytically active 

sites on a catalyst with heterogeneous surface sites. Hence, it is not plausible that the catalytic 

process on a surface with heterogeneous sites would start anywhere on the catalyst surface. 

Consequently, it is necessary to revisit the experimental conditions under which the CO pre-

oxidation very often appears, as well as to examine the characteristics of the possible most 

active sites involved in the reaction pathways of CO pre-oxidation. Then, for a COads layer 

adsorbed under potential control, the voltammetric evolution of the CO pre-oxidation 

requires fulfillment of the following interconnected conditions 17: (1) adsorption of CO at 

potentials lower than about 0.2 VRHE; (2) a defected catalyst surface; (3) surfaces saturated with 

COads; (4) presence of traces of CO in the solution phase. The appearance of the CO pre-

oxidation process implies that the rate of the CO electro-oxidation reaction is highly sensitive 

to conditions that are not related to either the nature of the catalyst or the chemical nature of 

the electrolyte. The condition of surface CO saturation implies that all types of Pt sites become 

occupied by COads, including the top sites of the steps, their corresponding bottom sites, and 

terraces. For the process of COads layer formation on a polycrystalline Pt surface in an acid 

media, experiments employing slow mass transport (CO extremely diluted or titrating Pt 

surface with CO molecules 18), with monitoring of the CO stretching frequencies of COads by 

in situ attenuated total reflectance-surface enhanced IR absorption spectroscopy, showed that 

CO preferentially occupies sites consisting of low coordinated atoms (defects) 18. A similar 

conclusion was reached previously by Cuesta et al. 19, employing similar spectroscopic 

techniques. In a previous paper 20, apparent non-preferential CO site occupation on Pt 

electrodes in an acid media at very early stages in the formation of the COads layer was possibly 

wrongly identified, because the CO gas did not meet the condition of being extremely diluted 

in the solution. In fact, under this last condition, it seems that there is no preferential CO site 

occupation (as can be seen in the spectra reported elsewhere 19). Employing stepped Pt 

surfaces, it was concluded that the set of sites at the bottom side of the steps, which are (111) 

terrace sites, are the hardest sites to be occupied by CO 21. Interestingly, these sites have been 

identified as those requiring the smallest overpotentials for activation of the pathways for the 

CO electro-oxidation reaction 21. The highest CO coverages are achieved when the adsorption 

potentials are as low as those of the HUPD region, and the solution must contain traces of 
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dissolved CO 22. On Pt(111) stepped surfaces, since the CO pre-oxidation involves the sites at 

the bottom side of the steps, the above consideration can explain why the four 

aforementioned conditions must be fulfilled to ensure the appearance of the CO pre-oxidation 

17.  

In CO saturated solution, it has been found that CO on a Pt(111)-type electrode in an 

acid solution forms a COads superstructure, p(22)–3CO (CO  0.75), whose phase transitions 

toward (√19√19)R23.4o–13CO (CO ≃ 0.68), by means of transient structures, takes place at 

potentials at which the CO pre-oxidation appears 23, 24. The transition between both structures 

is catalyzed by the presence of steps 25. The first structure is obtained for a COads layer obtained 

at low potentials (such as ~0.0 VRHE), in the presence of CO in the solution 26. The second 

structure is obtained at a potential of around ~0.5 VRHE 26, apparently even in the absence of 

CO in the solution 23. An additional structure for the COads layer, the (√7√7)R19.1°–4CO 

(CO ≃ 0.57), has also been observed for diluted COads layers in absence of CO in the solution 

phase 26. The CO pre-oxidation also appears on Pt(100) surfaces 27, particularly defected ones 

28, as well as on polycrystalline Pt 29, 30 and (faceted) Pt nanoparticles 31 32, provided that 

criterion of the low potentials for CO adsorption is obeyed, as explained above. On Pt(100)-

type surfaces, the CO pre-oxidation is usually much more pronounced, corresponding to the 

electro-oxidation of about 15% of the complete layer of COads, and the pre-oxidation peak and 

the main oxidation peak appear separated by ~0.25 V 28, 33. It should be noted that in alkaline 

solution, the CO pre-oxidation appears, irrespective of whether there is a trace of CO in the 

solution side 21, 34. Considering CO pre-oxidation only on Pt(111)-type surfaces, the emergence 

of catalytic activity at low overpotentials is associated with the presence of steps/defects on 

the surface 6, 17, 23, 24, 35-37 (a certain type of surface defects 37). However, in previous work, it was 

found that the magnitude of the CO pre-oxidation was impaired by defects on the surfaces 

when the COads layer was formed while the flame annealed Pt(111) electrode was suitably 

cooled in a CO atmosphere 14. This finding highlights the complexity of the roles that surface 

defects can play in the electrocatalysis of CO oxidation and deserve to be investigated.  

One aim of the work was to provide further insights concerning the characterization of 

the role of surface defects in electrocatalysis of the CO oxidation reaction at low 

overpotentials, particularly as a result of pretreatment of the catalyst surface.  

 



2. Experimental Section  

2.1. Electrodes and Electrolytes  

Bead-type electrodes (oriented area ~4.5 mm2) were used as working electrodes, namely 

Pt(111), Pt(20 20 19), Pt(13 13 12), and Pt(332), which consisted of “infinite”, 39, 25, and 5 

atom-wide (111) terraces, respectively, periodically broken by (110) monoatomic steps. The 

oriented surfaces of the last three bead-type electrodes are called stepped surfaces. A very 

useful way to represent stepped surfaces is to use the Lang-Joyner-Somorjai model 38, 

according to which these surfaces belong to the Pt(s)-[(n – 1)(111)×(110)] series (where n is 

the number of atoms comprising the width of the (111) terraces). The Miller index for these 

surfaces is (n, n, n-2) and they can be individually represented as follows:  

Pt(20 20 19) ≡ Pt(s)-[39(111)×(110)], n – 1 = 39  

Pt(13 13 12) ≡ Pt(s)-[25(111)×(110)], n – 1 = 25  

Pt(332) ≡ Pt(s)-[5(111)×(110)], n – 1 = 5  

The working electrodes were annealed in a butane/air flame, followed by cooling in a 

free of oxygen reducing atmosphere of either Ar/H2 (according to the Clavilier procedure 39) 

or CO (N47, Alpha Gaz). It has been shown that the thermal treatment in the reducing 

atmosphere leads to the surface structures that correspond to the nominal values {herrero, 

orts}. Moreover, the voltammetric profile of the electrodes in sulfuric acid, which are very 

sensitive to the surface structure allows confirming the presence of the nominal surface 

{clavilier, rodes}. The counter electrode was a Pt wire (which was repeatedly annealed in a 

butane/air flame and washed with ultrapure water before use), while a reversible hydrogen 

electrode (RHE) was used as the reference electrode. All the potentials were referenced to the 

RHE scale unless otherwise stated, and were converted to the standard hydrogen electrode 

(SHE) scale when needed.  

CO stripping experiments were performed using the cyclic voltammetry technique. In 

this case, the preparation of the CO-covered electrode followed two procedures: (1) 

adsorption of CO at 0.100 V in the electrochemical cell, and elimination of the non-adsorbed 

CO from the solution; (2) formation of the COads layer while the flame-annealed Pt electrode 

was cooled in a CO atmosphere, and immersion of the CO-covered electrode in the solution, 

at a constant potential of 0.100 V. These procedures will be better understood from the 

descriptions for each specific experiment.  



Solutions of 0.1 M HClO4 (Aldrich, 70%) and 0.1 M H2SO4 (Suprapur, Merck) were 

prepared in ultrapure water (18.2 M cm). The solutions were degassed using Ar (N50, Alpha 

Gaz). The potential of the electrode was controlled using a waveform generator (Model 175, 

EG&G PARC) together with a potentiostat (Model 551, Amel) and a digital recorder (Model 

ED 401, eDAC).  

 

2.2. Temperature Control, Potential Corrections, and Conversion of Potential Scales  

The experiments were performed at temperatures ranging from 283 to 318 K, in 

intervals of 10 K. The electrochemical cell was immersed in a glass vessel, through which 

water was circulated from a reservoir, under thermostatic control. When the temperature was 

changed, Ar gas was bubbled through the solution to ensure fast equilibration of the 

temperature throughout the medium. The level of the solution in the cell was kept below the 

level of the temperature-controlled water in the vessel, so that the entire solution remained 

at a uniform temperature.  

The electrochemical cell used had one drawback, in that the reference electrode was 

outside the cell. Consequently, in experiments with temperature variation, there was an 

electrolyte temperature difference, with the reference electrode being maintained at the 

ambient temperature of the laboratory (~25 oC), whereas the working electrode was kept at 

the temperature of the thermal bath. A non-isothermal electrolyte causes thermal diffusion 

phenomena in the form of parasitic potential drops that do not allow direct conversion of the 

measured potential (RHE scale) to the SHE (thermodynamic) scale. The parasitic potential 

depends on the temperature, solution composition, and nature of the electrolyte (ions). The 

difference between the corrected and measured potentials, Δ𝐸TD , is the potential correction 

due to thermal diffusion. For a 0.1 M HClO4 solution, the term Δ𝐸TD /Δ𝑇 was quantitatively 

obtained as follows 40:  

Δ𝐸TD 

Δ𝑇
≃ −0.381 mV K−1                                                         (1) 

where T = T – 298 K. The corrected potentials (RHE scale) at the temperature T of the 

experiments (ERHE, T (corrected)) were then calculated as follows:  

𝐸RHE,   𝑇 (corrected) = 𝐸measured + 𝐸correction                        (2) 

where the 𝐸correction  term was obtained from Equation 1. Despite slightly decreased precision 

of the potential determination, an important advantage of using an external reference 

electrode is that the electroactive elements are maintained under less aggressive conditions. 



This particular choice provides greater stability for the reference electrode, despite a loss in 

the accuracy, and for this reason, this arrangement was selected. After the above corrections 

of the potentials, the corrected potentials (RHE scale) at the electrochemical cell temperature 

were converted to potentials on the standard hydrogen electrode (SHE) scale, at 298 K, as 

follows 41:  

𝐸SHE,   𝑇 = 𝐸RHE,   𝑇 − 0.021 V                                                      (3) 

𝐸SHE,   298 K = 𝐸SHE,   𝑇 + (𝑇 − 298 K)
∂𝐸

∂𝑇
                                 (4) 

where the coefficient E/T = 8.410-4 V K-1.  

 

2.3. Activation Energy  

The activation energies for the CO electro-oxidation were calculated using the model 

described as 41:  

𝐸p − 𝐸0 =
𝑅𝑇

𝐹
ln

𝐽p𝐴−1𝑎H+

𝑄p𝐴1𝐴2CO,pH2O,p
+ 𝐸act         (5) 

where Ep, Jp, and Qp, are, respectively, the peak potential, the peak current density, and the 

uncorrected charge of the voltammetric feature due to the CO electro-oxidation; E0 is the 

standard potential for the electro-oxidation of adsorbed CO (assumed to be ~0.00 VSHE); Ai are 

the pre-exponential factors; 𝑎H+ is the activity of the protons; CO, p and H2O,p are the 

coverage of CO and H2O, respectively, at the peak potential; F, T, and R are the Faraday 

constant, temperature (in kelvins), and the gas constant, respectively. The activation energies 

(𝐸act, in kJ mol-1), referred to T = 0 K, were determined from the intercepts of the straight 

lines obtained for the relation (Ep – E0) versus T.  

 

3. Results  

3.1. Voltammetric Characterizations of the Electrodes  

Figure 1 shows the voltammetric profiles of the non-defected Pt(111), Pt(20 20 19), 

Pt(13 13 12), and Pt(332) electrodes in a 0.1 M HClO4 solution. The figure includes hard-

sphere models for each crystal surface. For recording these cyclic voltammograms, the Pt 

crystal was annealed in a butane/air flame, followed by cooling in a stream of H2/Ar (about 

1:10 ratio) in a vessel partially filled with ultrapure water. It is standard practice to acquire 

voltammetric profiles of the electrode only in the electrolyte before recording any other 



desired experiment to assure that the surface is well-ordered, and the solution is clean. These 

voltammetric profiles were also obtained for the CO treated electrodes after the stripping of 

the COads layer. The cyclic voltammogram of the non-defected Pt(111) electrode after 

stripping off the COads layer formed during the cooling of the electrode in a CO atmosphere 

is presented later. Regardless of the orientation of the surface, for potentials below about 0.33 

V (Figure 1), the interfacial electrochemical processes were dominated by the reversible 

discharge of the proton to form adsorbed hydrogen on the Pt sites, so (disregarding the 

interfacial water and probably the interfacial anions) the reaction was simply H+ + e- + *active 

sites ⇄ Hads, the hydrogen adsorption/desorption. This proposal is based on the fact that for 

Pt(111)-type polarized electrodes, for example, in a perchloric acid solution, the potential of 

zero total charge is located below 0.33 VRHE 42. Regarding the hydrogen adsorption/desorption, 

this reaction is fast, surface-limited, and sensitive to the surface structure associated with the 

Pt sites. The presence of defects on the Pt surface causes a noticeable change in the 

voltammetric profile, in particular in the hydrogen region. Hence, for Pt(111) terraced 

surfaces consisting of (110) steps, the hydrogen adsorption/desorption results in a pair of 

prominent and symmetric peaks at ~0.13 VRHE 1 43, indicative of a reversible process involving 

the top of the steps sites. All the features below the peaks at ~0.13 V are due to the discharges 

of the proton to form hydrogen adsorbed onto (111) terraces sites, including those sites related 

to the bottom side of the steps, as illustrated for the Pt(332) surface in Figure 1. In this figure, 

the intensities of the pair of peaks at ~0.13 V increase with increasing density of the crystalline 

(110) steps ((hkl)), defined as the number of steps per unit length in the plane of the terrace 

((hkl), in cm-1), which follows the order: (332) >> (13 13 12) > (20 20 19) >> (111)non-defected, as expected 

for a contribution related to the presence of (110) steps. At more positive potentials, a pair of 

peaks appears at ~0.8 V, probably due to a reversible process involving the (perchlorate) 

anions and interfacial water molecules, requiring the long-range order of (111) terraces 44. 

None of the voltammograms show any signs of (100) defects, which would give rise to a pair 

of peaks at ca. 0.27 V for this pH, indicating that the Pt surfaces are well-ordered. In fact, the 

H+ + e- + *H2O ⇄ Hads + H2O reactions are so sensitive to the Pt surface structure that surface 

defects with coverage on the order of ~1/150 can be detected by voltammetry (especially in 

sulfuric acid solutions). Therefore, it could be inferred that the Pt(111) used in this study was 

a non-defected Pt(111) surface, within the limits of the detection. Further insights about the 



origins of the interfacial processes involving Pt single crystal in aqueous solution can be found 

in a previous work 45.  

 

3.2. Stripping of COads Layers on Different Pt Surface Orientations  

Figure 2 shows the voltammograms for the electro-oxidation of COads layers formed 

under two different conditions. In the first case, the COads layer was formed at a constant 

potential of 0.100 V for Pt electrodes which were cooled in an H2/Ar (reducing) atmosphere 

after flame annealing. For the preparation of these COads layers at 0.100 V, the oriented part 

of the crystal was immersed in the solution and CO gas was bubbled through the solution for 

5 minutes. Next, the CO flow was interrupted, followed by bubbling of Ar gas through the 

solution for 20 minutes, for the complete elimination of the non-adsorbed CO. It was 

extremely important to ensure that all the non-adsorbed CO had been eliminated from the 

solution. This can be checked by the absence of a CO electro-oxidation peak in the next 

positive scan after the CO stripping, in particular, at a slower scan rate, for example, at 10 mV 

s-1. The CO stripping results, recorded at 50 mV s-1, are shown in Figure 2 (blue line) for four 

electrode surfaces. For the second procedure, the COads layer was formed during cooling of 

the flame annealed Pt crystal in a CO (reducing) atmosphere. In this case, the electrode (while 

still red) was quickly transferred to a vessel through which a stream of CO gas had been 

injected, so the crystal reached room temperature with its surface covered with a COads layer. 

The CO stripping results are as shown by the orange line in Figure 2. It is important to 

highlight that the real surface structure of the as-prepared electrode surface is strongly 

dependent on the chemical nature of the atmosphere in which the crystal was cooled, 

whether reducing, neutral or oxidizing. For example, the presence of oxygen in the 

atmosphere in which the Pt crystal was cooled resulted in roughening of the surface, as 

observed by STM (scanning tunneling microscopy), while a well-ordered Pt(111) surface was 

obtained by cooling the flame annealed crystal in reducing and inert atmospheres 46, 47. Since 

the voltammograms are very sensitive to the surface structure, these differences in the surface 

structure result in changes in the voltammetric profiles, and, consequently, changes in the 

catalytic activity as well.  

As shown in Figure 2 (blue line), the stripping of the COads layer formed on the non-

defected Pt(111) electrode at 0.100 V presented a single peak, with the COads layer electro-

oxidation starting at ~0.7 V and reaching a maximum at ~0.82 V. In fact, all the CO stripping 



voltammograms for COads layered at 0.100 V on the different stepped surfaces showed only a 

single CO oxidation peak (insets in Figure 2), and no signals were observed corresponding to 

the CO electro-oxidation reaction at potentials of around ~0.6 V. It is important to note that 

this was only the case where CO oxidation does not occur at low potentials because all the 

non-adsorbed CO was deliberately eliminated from the solution. Evidence supporting this 

statement will be provided later. In Figure 2, as expected, for CO dosed at 0.100 V, the peak 

potential of CO electro-oxidation moved to less positive potentials when passing from the 

non-defected Pt(111) to the Pt(332) surface, showing that, under those specific experimental 

conditions described above, surface defects favored the reaction. For the non-defected Pt(111) 

surface, the measured CO coverage for CO dosing at 0.100 V, after appropriate correction 48, 

was CO ≃ 0.68 (with free CO in the solution phase), which was in agreement with the 

formation of a (√19√19)R23.4°-13CO structure 26.  

In the case of the layered COads obtained during cooling of the non-defected Pt(111) 

crystal in a CO atmosphere (Figure 2, orange line), the CO stripping profile presented two CO 

electro-oxidation peaks. For example, in the case of the non-defected Pt(111), the CO electro-

oxidation starting at ~0.55 V; the main  CO electro-oxidation peak appeared at ~0.74 V (whose 

average charge density was ~235 C cm-2, after the appropriate corrections 48) and another 

one appeared at ~0.65 V, which is here denoted unusual CO pre-oxidation, whose average 

charge density was ~75 C cm-2. The total CO coverage was CO  0.64  0.02 (obtained at a 

CO stripping temperature of ~300 K). Based on the data above, unusual CO pre-oxidation 

corresponds to about 24 % [≡ (75 C cm-2/310 C cm-2)100] of the total charge that crosses 

the electrode/electrolyte interface during the electro-oxidation of this COads layer.  

The experimental results in Figure 2 presented the following general features: (a) For 

COads layered at a constant potential of 0.100 V, the CO pre-oxidation does not appear, even 

with the stepped Pt surfaces (it should be noted that the non-adsorbed CO had been 

completely eliminated from the solution); (b) For both COads layer preparation procedures, 

the main CO electro-oxidation peaks move to less positive potentials as the surface passes 

from non-defected Pt(111) to Pt(332), which was the same direction as the increase in the 

surface “step density” ((hkl)): (111)non-defected << (20 20 19) < (13 13 12) < (332); (c) For electrodes cooled 

in a CO atmosphere, the magnitude of the unusual CO pre-oxidation decreases as the surface 

passes from non-defected Pt(111) to Pt(332). The unusual CO pre-oxidation did not occur for 

Pt(332). Features (b) and (c) indicated that steps on the surface were associated with improved 



catalysis of CO electro-oxidation in the main electro-oxidation peak, while they suppressed 

the appearance of the unusual CO pre-oxidation. Finally, for the layered COads obtained while 

the Pt(111) electrodes were cooled in a CO atmosphere, the effects of the steps/defects on the 

surface in suppressing or promoting the activation of reaction pathways in the CO electro-

oxidation do not extend to the COads layer as a whole, that is, only the part corresponding to 

the CO pre-oxidation or electro-oxidation of CO at lower overpotentials is suppressed on the 

defected Pt surfaces (Figure 2).  

Experiments similar to those performed using Pt single crystals (CO dosed at 0.100 V 

and elimination of the non-adsorbed CO for 20 min) were also performed using a bead-type 

poly-oriented Pt electrode. The results are shown in Figure 3A, where the orange line refers 

to the electro-oxidative stripping of a COads layer formed while the flame annealed poly-

oriented Pt electrode was cooled in a CO atmosphere, while the black line corresponds to the 

stripping of a COads layer formed at a constant potential of 0.100 V. It can be seen from Figure 

3A that there was no unusual CO pre-oxidation in the stripping of the COads layer formed 

during cooling of the electrode in a CO atmosphere. Furthermore, there was no ordinary CO 

pre-oxidation for the CO layer formed at 0.100 V, because the non-adsorbed CO was 

completely eliminated from the solution. Figure 3B shows the corresponding cyclic 

voltammograms for the bead-type poly-oriented Pt electrode in 0.1 M HClO4 solution. The 

pair of small peaks appearing at ~0.80 V could have the same relationships with the feature 

appearing at ~0.80 V in the voltammograms for the Pt(111) electrode in perchloric acid 

solutions.  

As stated above, to provide evidence that, at least, traces of CO in the solution phase 

are required for the appearance of the CO pre-oxidation in voltammograms for CO stripping 

employing stepped Pt surfaces, experiments were performed using the Pt(332) electrode after 

dosing with CO at 0.100 V for 5 minutes, with the application of different CO elimination 

times (30, 12, 8, and 5 minutes). The results are shown in Figure 5. On one hand, for long 

purging times (on the order of 30 minutes), complete elimination of CO from the solution led 

to the absence of the CO pre-oxidation. On the other hand, for shorter purging times, the CO 

pre-oxidation appeared around 0.6 V, and its magnitude increased as the time (purging time) 

was reduced. Similar results were reported for other stepped Pt surfaces in acidic medium 17. 

This experiment was important for a broader assessment of the origins of the CO pre-

oxidation, which is the purpose of the present work.  



Most of the electrochemical experiments reported here were performed using 

perchloric acid solutions. However, experiments were also performed using a sulfuric acid 

solution (0.1 M H2SO4). It is well documented that perchlorate anions slightly adsorb on 

Pt(111) plane 49, whereas the sulfate anion (SO4
2−) specifically adsorbs on the Pt(111) plane 50. 

The adsorption strength of the perchlorate anion is weaker than that of the sulfate anion. 

Therefore, the evaluation of the influence of the adsorbing anion on the unusual CO pre-

oxidation was made on a non-defected Pt(111) crystal surface. For this, the COads layer was 

obtained while the flame annealed Pt(111) electrode was cooled in a CO atmosphere. The 

stripping of the COads layer is shown in Figure 5 (orange line). The stripping of a COads layer 

formed at 0.100 V after the elimination of solution CO for 20 min is also shown in Figure 5 

(blue line). The unusual CO pre-oxidation is marked by the presence of a peak at ~0.65 V, 

while no CO pre-oxidation is observed for CO dosed at 0.100 V. Hence, regardless of the 

nature of the electrolyte, that is, solution of perchloric acid and sulfuric acid, the non-defected 

Pt(111) electrode is most active for CO electro-oxidation if the layered COads was acquired 

while cooling the flame annealed electrode in a CO atmosphere.  

 

3.3. Stripping of the CO Layers at Different Temperatures  

A set of COads layer stripping experiments was performed at temperatures ranging from 

283 to 318 K. In this case, the COads layer was formed by cooling the flame annealed the non-

defected Pt(111) electrode in a CO atmosphere, as described in the previous section. The 

electrode covered with COads was, then, transferred to the electrochemical cell, which was 

already at the temperature-programmed to perform the CO stripping. The results are shown 

in Figure 6. The voltammetric profiles exhibit two CO electro-oxidation peaks, which shift to 

less positive potentials as the CO stripping temperature increases, as expected. For three 

experiments repeated at the same temperature, we compared the peak potential and current 

intensity. In these repetitions, the peak potentials for experiments performed differed by only 

about 3 mV, whereas, as an example, the maximum current density varied from ~840 to ~890 

A cm-2 at 303 K. The peak currents for T < 313 K are almost temperature independent. 

However, as shown in Figure 6, there was a noticeable diminution in the current densities for 

the main CO electro-oxidation, and the unusual CO pre-oxidation peaks for T  313 K (a 

similar trend can be seen in Figure 7 of a previous study 41), whose origin is unknown. In 

addition, the voltammetric features due to the CO electro-oxidation (considering the unusual 



CO pre-oxidation and main oxidation peaks) became wider with increasing temperature. The 

influence of temperature on total COads coverage follows the same trend as that observed for 

the peak intensity (Table 1),: when T < 313 K the total CO coverage is nearly constant (CO ≃ 

0.64) and diminishes for T  313 K, where CO ≃ 0.60  for T = 313 and CO ≃ 0.55 for T = 318 

K. Table 1 also includes data on charge densities of CO pre-oxidation and the main CO electro-

oxidation peaks. For CO stripping at temperatures ranging from 283 to about 303 K, the charge 

densities of unusual CO pre-oxidation were about 24% of the charge of a complete layer of 

COads (QCO pre-oxidation + Qmain CO oxidation). However, the charge of unusual CO pre-oxidation 

decreases as the stripping temperature rises above 303 K (Table 1). For temperature ranging 

from 283 to 313 K, the peak potentials for the unusual CO pre-oxidation and main oxidation 

peaks decreased linearly with the increase of the temperature (see Figure 7), with slopes of –

1.62  0.02 and –1.64  0.02 mV K-1, respectively. In this figure, the error bars correspond to 

the standard deviation of three different measurements. Considering the temperature range 

from 283 to 313 K in Figure 7, the intercept of the plot of Ep – Eo vs. T (Equation 5) enabled 

the determination of the activation energies (Eact), which were ~108 and ~117 kJ mol-1 for the 

unusual CO pre-oxidation and main CO electro-oxidation processes, respectively. For the 

stripping of a CO layer dosed on a Pt(111) electrode at 0.1 VRHE in a 0.1 M HClO4 solution, 

Herrero et al. 41 found an activation energy for CO electro-oxidation of ~111 kJ mol-1 (this 

became ~20 kJ mol-1 higher in a sulfuric acid solution 41). It has been shown that the activation 

energy for COads stripping strongly depends on the potential at which the COads layer was 

formed, varying substantially from 1.28 to 2.17 V 51. 

 

3.4. Step-wise Oxidative Stripping of the COads Layer  

For these experiments shown in Figure 8, the layer of COads was also formed during 

cooling of the flame annealed non-defected Pt(111) electrode in a CO atmosphere, as 

described above. The COads layer was then voltammetrically oxidized in successive steps. The 

potential of the CO covered electrode was swept from 0.100 V up to a value sufficient to 

oxidize only a small portion of the COads species responsible for the unusual CO pre-oxidation 

process. For this, different upper potential limits were chosen. For example, for the 

experiments shown in Figure 8A, in the first potential sequence, the potential was swept from 

0.100 V up to 0.62 V, after which it was stepped back to 0.100 V. In the second potential 

sequence, the upper potential limit was slightly higher than that of the previous step. The 



reason for the progressive increase of the upper potential limit was that the potential required 

to restart the electro-oxidation of the remaining COads layer was progressively higher than 

that required in the previous partial CO electro-oxidation step (Figure 8A). In the third step, 

the potential was swept from 0.100 up to 0.900 V, to remove the entire remaining COads layer. 

As can be seen in Figure 8A, electro-oxidation of the portion of the COads species responsible 

for the unusual CO pre-oxidation did not release active sites for the hydrogen desorption, as 

revealed by the absence of current signals below 0.4 V. In addition, the main CO electro-

oxidation peak potential was at ~0.75 V, which was almost the same as in Figure 2.  

In the experiments shown in Figure 8B, in the first potential sequence, the potential 

was swept from 0.100 to 0.7 V, in order to electro-oxidize all the COads species responsible for 

the unusual CO pre-oxidation. The potential was then stepped back to 0.100 V, followed 

shortly afterward by application of a second potential sweep up to 0.900 V, for removal of the 

remaining COads layer. In this case, the main CO electro-oxidation peak potential was ~0.75 

V (Figure 8B), which was similar to the experimental results shown in Figures 2 and 8A. In 

the case of Figure 8B, the complete electro-oxidative elimination of the COads species 

responsible for the unusual CO pre-oxidation apparently released a very small fraction of Pt 

sites active available for the hydrogen desorption, seen at the very beginning of the second 

cycle (insert of Figure 8B, black line). However, it is possible that the anodic current that 

appeared at lower potentials (around 0.1 V) in the second cycle (Figure 8B, black line) could 

have been a contribution from the electro-oxidation of H2 released when the potential shifted 

from 0.100 to 0.06 V, before going to high potentials. The potential required to restart the 

electro-oxidation of the remaining COads layer progressively increased, which indicated that 

there was no reoccupation of the most active sites as they were released during the previous 

CO electrooxidations steps.  

Another important aspect shown in Figure 8 concerns the blank voltammogram for the 

non-defected Pt(111) single crystal recorded after CO stripping. There was no apparent 

surface restructuring after CO stripping, similar to the results reported previously 14. In a study 

employing in situ STM imaging of Pt(111) after cooling in a CO + N2 (reducing) atmosphere, 

it was concluded that there were no changes in surface morphology of the Pt(111) surface 

after stripping off the COads layer 46. On the other hand, CO adsorption/oxidation cycles can 

induce a change in the order of the Pt(110) surface from Pt(110)-(12) to Pt(110)-(11) 52. At 

the best, due to the strong binding of the CO molecules, the cycles of adsorption/oxidation 



are useful for cleaning (and event protecting) the catalyst surfaces (at least, the surfaces with 

which the CO molecules strongly bind).  

Another experiment was carried out involving the COads layer formed during the 

cooling of non-defected Pt(111) in a CO atmosphere. In this case, before the COads layer was 

voltammetrically stripped, the potential was cycled between 0.06 and ~0.45 V several times. 

Then, the voltammetric profile of the CO stripping (Figure 9) was very similar to that of the 

experiment without previous potential cycling (Figure 2, orange line). The result shown in 

Figure 9 suggested that the structure of the COads layer was quite stable and should not 

undergo irreversible restructuring under cycling using potentials lower than the threshold 

potential for CO electro-oxidation (not shown).  

 

4. Discussion  

This paper reports that steps/defects on the Pt surfaces can improve as well as worsen 

the catalytic activity of Pt electrodes toward the electro-oxidation of CO at low 

overpotentials, depending on the method used to prepare the COads layer. This indicates that 

surface defects can provide different functionalities in the electrocatalysis of CO oxidation on 

platinum electrodes. It also indicates that the pre-oxidation of CO has different origins.  

 

4.1. Origins of the CO Pre-oxidation and the Functionalities of the Surface Defects  

The origin of the CO pre-oxidation and the set of experimental conditions that should 

be fulfilled to ensure its appearance on Pt(111)-type electrodes in acid media were reported 

in a previous paper 17. The present study confirms that these same experimental conditions 

also apply to poly-oriented Pt in acid media (Figure 3A). For the surfaces of the Pt(s)-[(n – 

1)(111)(110)] series, which are surfaces consisting of (111) terraces periodically broken by 

(110) monoatomic steps, the set of most active sites involved in the CO pre-oxidation lie at 

the bottom side of the steps (and close to them). On these stepped surfaces, these most active 

sites are (111), whose tuning in the catalytic activity is related to the phenomenon of 

electronic charge separation between the top and bottom of the steps (as explained elsewhere 

13). A similar phenomenon is the Smoluchowski effect 53, which involves charge redistribution 

at the steps, with the top part of the step having a positive charge, while negative charge 

accumulation occurs in the counterpart. Thus, due to the electronic charge separation, 

steps/defects on the surface can be understood as a dipole on the surface. It was proposed that 



steps on the surfaces do not, by themselves, act directly as the most active sites in the 

electrocatalysis of the CO electro-oxidation reaction, but instead act by altering the stability 

of the neighboring sites 13. This means that the steps/defects on the surfaces are the origin of 

the “creation” of the most active sites on the (111) terraces. Therefore, the 2D characteristics 

of such most active sites can explain the origin of the CO pre-oxidation on surfaces of the 

Pt(s)-[(n – 1)(111)(110)] series, as well as poly-oriented Pt, under certain specific conditions 

of CO coverage and potential of CO dosage (Figures 2, 3, and 4). Hence, under the conditions 

specified above, in particular the origin of COads from direct CO dosing (or dissociation of 

alcohols 13), surface defects are necessary ingredients that indirectly favor activation of the 

pathways for CO electro-oxidation on (111) terraces, at low overpotentials.  

The conclusion reached above does not explain the occurrence of the unusual CO pre-

oxidation on the non-defected Pt(111) surface, mainly due to the lack of defects on the 

surface, or rather, because the surface defects deteriorate the catalysis, as we can conclude 

from the data in Figure 2. On one hand, it is noteworthy that the position of the peak potential 

of the unusual CO pre-oxidation hardly varied with the (111) terrace width or the equivalent 

density of surface steps (Figure 2). On the other hand, another intriguing aspect is that the 

peak potentials for the main CO electro-oxidation processes moved significantly toward lower 

overpotentials, as defects were introduced on the surface, in parallel with suppression of the 

unusual CO pre-oxidation (Figure 2). This strongly indicated that for the same layer of COads, 

the steps/defects on the surface did not equally or in the same way affect both “catalytic” 

processes involving the entire COads layer. Hence, the unusual CO pre-oxidation and main CO 

electro-oxidation peaks appeared to be kinetically decoupled. Indeed, the decoupling of the 

two processes enabled calculation of the activation energies for the unusual CO pre-oxidation 

and the main CO electro-oxidation as ~108 and ~117 kJ mol-1, respectively, using the effect of 

the temperature on the peak potentials. Thus, employing stepped Pt surfaces, the data (Figure 

2) suggested that the entire population of COads species forming the COads layer was not 

uniformly affected by defects on the surface. Consequently, from the catalysis viewpoint, this 

strongly suggested that there was no single type of active site that operated in the entire COads 

electro-oxidation layer. Hence, from a 2D perspective of the active sites for the CO electro-

oxidation reaction, even the perfect Pt(111) surface behaves as a heterogeneous surface. The 

possible causes for the heterogeneity of active sites for CO electro-oxidation on a non-

defected Pt(111) surface will be addressed later. Then, concerning the influence of the 



steps/defects in the origin of the unusual CO pre-oxidation, one hypothesis is that the steps 

on the surface “inhibit” the formation (or existence) of COads species responsible for the 

unusual CO pre-oxidation, because long-range order on the (111) plane is required. Hence, 

for similar Pt surfaces in the presence of a similar electrolyte, it is highly possible that there 

are many causes of CO pre-oxidation, including the unusual pre-oxidation that occurs with 

non-defected Pt(111) electrode. Curiously, at least for the surfaces of the Pt(s)-[(n – 

1)(111)(110)] series, one interesting aspect that unifies both “ordinary” CO pre-oxidation 

and the unusual CO pre-oxidation is that the most active sites involved in these processes 

undoubtedly reside on the (111) terrace sites. The difference is that the defects on the surface 

are beneficial for only one of these CO pre-oxidation processes, as discussed above. Different 

from what has until now been believed, even a perfect Pt(111) single crystal would be very 

active toward the electro-oxidation of CO. Therefore, based on the above, it is reasonable to 

state that the steps/defects on the surfaces, under certain experimental conditions, play roles 

that very often result in the catalytic promotion of electro-oxidation of CO on Pt (based on 

the data shown in Figures 2-4). The term “very often” is used here, because an exception was 

identified, so there was no general condition whereby steps on the surface always favored 

catalysis of the electro-oxidation, even on a similar (Pt) surface in a similar electrolyte.  

In addition to surface defects, another parameter that decreased the unusual CO pre-

oxidation was the CO stripping temperature (Table 1). Conceptually, the increase in 

temperature has an impact on the surface (CO) coverage because it increases the desorption 

rate. When there are COads species with different desorption energies, it is expected that 

adsorbed species would preferentially desorb from the sites where they are most weakly 

bonded 54, 55. On the other hand at high surface coverage, lateral interactions among adsorbed 

species become important in determining the energy of adsorption 56. Since the charge density 

of unusual CO pre-oxidation was most proportionally affected (decreased) with increasing 

temperature, this indicated that the weakly adsorbed CO species were the species desorbed 

from the Pt(111) surfaces. In fact, for T <313 K, the charge density of the main peak of CO 

electro-oxidation was almost the same. Therefore, the weakly adsorbed CO species were the 

ones that were preferentially desorbed, which are the COads species whose electro-oxidation 

reaction would give rise to the unusual CO pre-oxidation. Hence, at least on the Pt electrodes, 

weakly adsorbed CO species were those that electro-oxidized at the lowest overpotentials. 

However, it should be noted that it was considered that the catalysis (of the CO pre-oxidation) 



was related to certain characteristics of the possible structure of the COads layer formed during 

the cooling of the electrode in a CO atmosphere. Hence, for a CO electro-oxidation reaction 

that exhibits the unusual pre-oxidation and main CO electro-oxidation peaks, the 

heterogeneity of active sites on non-defected Pt(111) may actually be a reflection of possible 

lateral interactions among COads species and, consequently, a reflection of the structure of the 

COads species in the compact layer. This increases the complexity of the nature of the active 

sites involved in the electrocatalysis of CO oxidation, in particular on (111) terrace sites. It 

should be noted that it is likely that the identity of the COads structure was preserved, to a 

certain degree, even with transfer of the (CO-covered) electrode to the electrochemical cell.  

The results described above were compatible with the formation of different ordered 

structures of COads on the non-defected Pt(111) electrode. The transition between them could 

give rise to the existence of CO pre-oxidation. Thus, when the CO was adsorbed from 

solution, the non-defected Pt(111) electrode at the constant potential of 0.1 VRHE gave CO 

coverage values that were in agreement with the formation of a nearly perfect 

(√19√19)R23.4o–13CO structure (CO ≃ 0.68). On the other hand, for COads layered during 

cooling of the electrode in a CO atmosphere, despite full blocking of the platinum sites, the 

lower coverage values indicated that this structure was not achieved, or, if it was formed, it 

had a large number of defects. On these defects on the COads layer (which do not correspond 

to defects on the Pt(111) surface), the CO electro-oxidation starts at lower potential. Then, 

the appearance of the CO pre-oxidation may be related to the transition of a COads structure 

to a second COads structure with lower coverage. As a matter of fact, COads structures on 

Pt(111) electrode with low coverage have been already observed 26. Thus, on the Pt(111) 

electrode, the CO pre-oxidation can be then associated with the phase transition between two 

stable COads layers, which is initiated on the defects of the COads layer. Thus, when the layer 

is formed by dosing CO in solution, the COads layer is almost perfect, and the phase transition 

is then hindered, so that when the potential reaches the value required for it, the whole COads 

layer is oxidized in a single peak. However, for the COads layer formed when CO is dosed in 

the cooling atmosphere, the transition likely starts on the defects of the COads layer, giving 

rise to the CO pre-oxidation. The diminution of the charge involved with the unusual CO 

pre-oxidation with the increasing step density clearly indicates that the second layer, with 

the lower coverage, is only stable on long-range order (111) domains.  



Studies with surfaces of the Pt(s)-[(n – 1)(100)(110)] series could lead to an even more 

comprehensive understanding of the origins of the CO pre-oxidation. This, combined with 

what is already known for the Pt(s)-[(n – 1)(111)(110)] surfaces, would provide further 

elucidation of the processes occurring on polycrystalline surfaces.  

 

4.2. Correlations between Structure and Activity of the Pt(111)-type Surfaces  

Employing stepped surfaces of the Pt(s)-[(n – 1)(111)(110)] series, it was shown that 

the catalytic activity for the CO electro-oxidation reaction increased as the (111) planes 

became rich in defects 18, 21. On one hand, as shown by the data in Figure 2 (blue line), for a 

layer of COads formed at 0.100 V, the catalytic activities of the Pt surfaces were in the order 

(similar to previous results 9): Pt(332) > Pt(13 13 12) > Pt(20 20 19) > Pt(111)non-defected. Hence, 

an evident correlation was established between surface structure and catalytic activity for the 

CO electro-oxidation reaction. It was not previously known that the structure-activity 

correlations should take into consideration the method used to prepare the COads layer, which 

probably influences the way that the COads species become compacted in the layer. Then, on 

the other hand, for a COads layer formed during cooling of the electrode in a CO atmosphere, 

as shown by the data in Figure 2 (orange line), the influence of the surface structure on the 

catalytic activity at low potentials followed the order: Pt(111)non-defected > Pt(20 20 19) > Pt(13 

13 12) > Pt(332). For the main CO electro-oxidation peak, the order was: Pt(332) > Pt(13 13 

12) ≃ Pt(20 20 19) > Pt(111)non-defected. Hence, for the reaction at low overpotentials, the 

structure-activity relationships showed the exact opposite trends in the two cases. This was 

an interesting finding of the present work. Therefore, at least for the CO electro-oxidation 

reaction, the data suggested that instead of referring to structure-activity relationships (cause 

and effect relationships), it may be more appropriate to refer to the correlation between 

surface structure and catalytic activity (catalytic properties), because the surface structure 

alone is not a determinant cause of the activity of the catalysts.  

 

5. Main Conclusions  

An investigation was made of the role of surface defects in the electro-oxidation 

reactions of COads layers on Pt(111)-type surfaces in 0.1 M HClO4. At low overpotentials, 

defects on the Pt surfaces had a strong influence, favoring or inhibiting the pathways for CO 

electro-oxidation on these catalysts, depending on the way that the COads layer was prepared 



or the (electro-chemical) environment of COads layer formation. For a COads layer formed at a 

constant potential, the defects on the surfaces enhanced the catalysis of the CO electro-

oxidation reaction, considering both the CO pre-oxidation (at low overpotentials) and the 

main CO electro-oxidation peak (at high overpotentials), as expected. In this case, (111) 

terraces behave as the most active sites, and the catalytic improvement by steps is likely 

because steps can modify the neighboring (111) terraces below the steps. On the other hand, 

for a COads layer formed during cooling of the flame annealed Pt(111) electrode in a CO 

atmosphere, defects on the surfaces impaired the pathways for CO electro-oxidation at low 

overpotentials (reflected by unusual CO pre-oxidation) and favored the electro-oxidation of 

CO at high overpotentials (reflected by the main CO electro-oxidation peak). In this case, the 

most active sites correspond to a situation that requires long-range order on the (111) plane, 

which corresponds to the “infinite” (111) terrace in an ideal situation, which is not present in 

the stepped surfaces. The results showed that for CO electro-oxidation, under particular 

experimental conditions, defects on the surfaces could play roles that very often result in the 

promotion of the catalytic activity. Therefore, at least on extended platinum surfaces, there is 

no general condition that the defects on the surface always favor the electrocatalysis of CO 

oxidation. However, it can be said that the electro-oxidation is triggered by the presence of 

defects in the surface or in the layer, with the specific characteristics of the COads layer 

determining which types of defects are active for a given COads layer structure. The data 

obtained in this work provided evidence that, at least for the CO electro-oxidation reaction 

at low overpotentials, the structure of the catalyst surface alone is not a factor that determines 

the catalytic activity.  
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Table 1. Influence of the temperature on COads coverage on non-defected Pt(111) electrodes. 

The data refer to Figure 6. QCO pre-oxidation is the charge (in C cm-2) of unusual CO pre-oxidation; 

Qmain CO oxidation is the charge (in C cm-2) in the main CO oxidation peak; CO (total) coverage 

of a complete layer of COads; % QCO pre-oxidation is the percentage of the charge density of the 

unusual CO pre-oxidation. Data refer to three different experiments performed at each 

temperature.  

 

Temperature (K)  QCO pre-oxidation 

/C cm-2  

Qmain CO oxidation 

/C cm-2  
CO (total)  % QCO pre-oxidation  

283  76  2  234  1  0.64  0.00  24.5  

293  69  8  237  3  0.64  0.02  22.5  

303  75  5  235  5  0.64  0.02  24.1  

313  60  3  229  1  0.60  0.00  21.8  

318  46  6  220  7  0.55  0.01  17.3  
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Figure 1. Cyclic voltammograms for Pt crystalline electrodes in 0.1 M HClO4 solution. 

Electrodes: non-defected Pt(111), Pt(20 20 19), Pt( 13 13 12), and Pt(332). The data were 

recorded at a temperature of 25 oC (the same temperature as the reference electrode), at a scan 

rate of 50 mV s-1. The electrodes were annealed in a butane/air flame, followed by cooling in 

an Ar/H2 atmosphere. The data include hard models for each crystal surface (drawn here: 

http://surfexp.fhi-berlin.mpg.de/).  

  



 

0.0 0.2 0.4 0.6 0.8 1.0

0

350

700

1050

1400

0.0 0.2 0.4 0.6 0.8 1.0

0

350

700

1050

1400

0.0 0.2 0.4 0.6 0.8 1.0

0

350

700

1050

1400

0.0 0.2 0.4 0.6 0.8 1.0

0

350

700

1050

1400

 

Pt(332); n - 1 = 5

0.74 V

0.70 V

 

Pt(20 20 19); n - 1 = 39

E vs  RHE/VE vs  RHE/V

E vs  RHE/V

j 
/ 


A
 c

m
-2

j 
/ 


A
 c

m
-2

j 
/ 


A
 c

m
-2

0.65 V

0.82 V

j 
/ 


A
 c

m
-2

E vs  RHE/V

0.74 V

Non-defected Pt(111)

0.73 V

0.79 V

Pt(13 13 12); n - 1 = 25

0.73 V

0.77 V

0.5 0.6 0.7

CO pre-oxidation

30 A cm
-2

0.5 0.6 0.7

CO pre-oxidation

30 A cm
-2

0.5 0.6 0.7

CO pre-oxidation

30 A cm
-2

0.5 0.6 0.7

30 A cm
-2

 

Figure 2. CO stripping on Pt crystalline electrodes in 0.1 M HClO4 solution: non-defected 

Pt(111), Pt(20 20 19), Pt(13 13 12), and Pt(332). Orange line: the COads layer was formed while 

the flame annealed Pt(111) electrode was cooled in a CO atmosphere. Blue line: the COads 

layer was formed at a constant potential of 0.100 VRHE. Black line: cyclic voltammetry in 0.1 

M HClO4 solution. The inset shows magnification of the pre-oxidation zones of these 

voltammograms. The data were recorded at a temperature of 25 oC (the same temperature as 

the reference electrode), at a scan rate of 50 mV s-1.  
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Figure 3. CO stripping on Pt poly-oriented electrode in 0.1 M HClO4 solution. Panel A: 

(orange line) COads layer formed during cooling of the flame annealed Pt(111) electrode in a 

CO atmosphere; (black line) COads layer formed at a constant potential of 0.100 VRHE. Panel B: 

(black line) cyclic voltammogram of a Pt poly-oriented electrode cooled in an Ar/H2 

atmosphere; (orange line) cyclic voltammogram of a Pt poly-oriented electrode recorded after 

the stripping of the COads layer formed during cooling of the electrode in a CO atmosphere. 

The data were recorded at a temperature of 25 oC (the same temperature as the reference 

electrode), at a scan rate of 50 mV s-1.  
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Figure 4. Importance of CO in the solution for evolution of the CO pre-oxidation on a Pt(332) 

stepped surface in 0.1 M HClO4 solution. The COads layer was formed at a constant potential 

of 0.100 VRHE and non-adsorbed CO was removed from the solution for different times 

(indicated). For better visualization, the figure only shows the regions of the voltammograms 

corresponding to the pre-oxidation of CO. The data were recorded at a temperature of 25 oC 

(the same temperature as the reference electrode), at a scan rate of 50 mV s-1.  
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Figure 5. CO electro-oxidation on a non-defected Pt(111) crystal in a 0.1 M H2SO4 solution. 

Orange line: the COads layer was formed while the flame annealed Pt(111) electrode was 

cooled in a CO atmosphere. Blue line: the COads layer was formed at a constant potential of 

0.100 V. The data were recorded at a temperature of 25 oC (the same temperature as the 

reference electrode), at a scan rate of 50 mV s-1.  
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Figure 6. Influence of the temperature on the electro-oxidation of COads on a non-defected 

Pt(111) electrode in 0.1 M HClO4 solution. The COads layers were formed while the flame 

annealed Pt(111) electrode was cooled in a CO atmosphere. The inset shows the magnification 

of these voltammograms in the pre-oxidation zones. The temperature of each experiment is 

indicated in the figure. (The reference electrode at a temperature of 25 oC) Potentials on the 

SHE scale, at 298 K. The scan rate applied was 50 mV s-1. 
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Figure 7. Plot of the peak potential (SHE scale, at 298 K) against absolute temperature, for 

electro-oxidation of CO on a non-defected Pt(111) electrode. The data refer to Figure 6. The 

error bars correspond to the standard deviation for three different measurements.  
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Figure 8. Partial electro-oxidative stripping of a COads layer on a non-defected Pt(111) 

crystalline electrode in 0.1 M HClO4 solution. The COads layer was formed while the flame 

annealed Pt(111) electrode was cooled in a CO atmosphere. (A): The CO pre-oxidation was 

partially removed by successive steps of partial cycles, applying different upper limits (shown 

by the blue, orange, and black lines). The inset shows the magnification of these 

voltammograms in the pre-oxidation zones. (B): The CO pre-oxidation was eliminated at once 

(shown by the orange line), followed by removal of the rest of the CO layer in a subsequent 

cycle (shown by the black line). The data include the voltammogram for the Pt single crystal 

after CO stripping. In both panels, the insets highlight the CO pre-oxidation regions. The data 

were recorded at a temperature of 25 oC (the same temperature as the reference electrode), at 

a scan rate of 50 mV s-1.   
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Figure 9. Electro-oxidation of a COads layer on a non-defected Pt(111) electrode in a 0.1 M 

HClO4 solution. The CO layer was formed during cooling of the flame annealed Pt electrode 

in a CO atmosphere. Before scanning the potential to electro-oxidize the CO layer, the 

potential was successively cycled (indicated in the figure) in the hydrogen region, as 

highlighted in the inset. The data were recorded at ambient temperature (about 25 oC). The 

scan rate was 50 mV s-1.  
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