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Abstract 

Adsorbed amino acids can modulate the behavior of metal nanoparticles in advanced 

applications. Using a combination of electrochemical experiments, FTIR spectroscopy, 

and DFT calculations, glutamate species interacting with the Au(111) surface in solution 

are here investigated. Electrochemical results indicate that the adsorption behavior 

depends on the solution pH (which controls the glutamate ionization) and on the charge 

of the surface. Glutamate adsorption starts at potentials slightly negative to the potential 

of zero charge. The thermodynamic analysis of these results indicates that two electrons 

are exchanged per molecule, implying that both carboxylic groups become deprotonated 

upon adsorption. The FTIR spectra reveal that carboxylate groups are bonded to the 

surface in a bidentate configuration (with both oxygen atoms attached to the surface). 

Plausible adsorbed configurations, consistent with the whole of these insights, were found 

using DFT. Moreover, it was observed that glutamate oxidation only takes place when 

the surface is oxidized, which suggests that this oxidation process involves the transfer of 

an oxygen group to the molecule, though, according to the FTIR spectra, the main chain 

remains intact.  

 

This is a previous version of the article published in Journal of Electroanalytical Chemistry. 2021, 880: 114870. https://doi.org/10.1016/j.jelechem.2020.114870

mailto:herrero@ua.es
https://doi.org/10.1016/j.jelechem.2020.114870


  

1. Introduction. 

Molecules adsorbed on the surfaces of metal nanoparticles (NPs), acting as 

shapers, stabilizers, biocompatibilizers, or functionalizers, are in the core of advanced 

applications of these components in nanomedicine, bionanotechnology, nanosensors, or 

pharmaceutical compounding [1-3]Error! Bookmark not defined.. Being the building 

block of proteins, the biocompatibility of amino acids is guaranteed. Thus, amino acids 

as adsorbed agents are a natural choice for these applications. Additionally, the wide 

number of different functional groups in the amino acids provides numerous opportunities 

to tailor the properties of the ensembles for the application. Amino acids have been used 

as linkers between drugs and nanoparticles, enabling target delivery [1, 2], and they have 

been used to immobilize biomolecules on electrodes in biosensors [3, 4]. Platinum and, 

mainly, gold, also because of its biocompatibility, are among the most investigated metals 

for these applications [5, 6]. Therefore, a deep knowledge of the interaction mechanisms 

of amino acids with those metals in solution is essential for the optimization of these 

applications. 

 Amino acid-metal interactions have been investigated in the last decades [7], 

though the interaction mechanisms have not been completely elucidated yet. On one hand, 

given that an adsorbent-adsorbate interaction depends on the specific arrangement of the 

surface atoms, fundamental studies require well-defined surfaces. In fact, studies of 

glycine [8-12], L-alanine [13-16], and L-serine [14-19] on single-crystal platinum and 

gold indicate that amino acid-metal interactions depend not only on the surface geometry 

but also on the solution pH, suggesting that these species adsorb preferentially through 

carboxylic groups, although in some cases, adsorption through the amino moiety has also 

been observed. On the other hand, combined techniques are often required to have a full 



description of the interaction. For instance, electrochemical experiments can identify 

hydrogenation states, but they cannot determine the geometry, and spectroscopic 

experiments can provide evidence of the presence of some functional groups, but they 

cannot unequivocally determine geometry either. However, theoretical DFT calculations 

can give rise to plausible adsorbent-adsorbate configurations consistent with 

electrochemical and spectroscopic experiments, so that a reasonably confident description 

of the interaction can be obtained. We have recently applied such a kind of combined 

approach to citrate interacting with platinum and gold [20, 21], unraveling the growing 

mechanism of NPs with preferential shape. 

Being similar to citric acid, L-glutamic (Glu) acid interacting with the Au(111) 

surface is here investigated using a combination of electrochemical experiments as well 

as the usage of ATR-SEIRAS spectroscopy and DFT calculations. More complex 

derivatives of this amino acid, such as the poly-glutamic acid, have been already used 

as adsorbed agents in nanomedical applications [22, 23]. Both citric acid and Glu present 

a main chain formed by two terminal carboxylic groups separated by 3 carbon atoms, 

differing only in the side groups. Citric acid presents a carboxylic and an OH group in the 

 position, whereas Glu has an amino group in the  carbon. Thus, Glu contains three 

acid/base groups, whose pKa values are 2.17, 4.25, and 9.67. Therefore, the main form in 

aqueous solutions will be different depending on the pH value, which can affect the 

surface interaction. For this reason, the interaction at different pH values is investigated. 

 

2. Methods 

2.1. Experimental methods 

Au(111) single crystal electrodes were prepared according to Clavilier’s method [24, 

25]. Ultrapure 0.5 mm diameter gold wire was fused and crystallized, to obtain a single 



crystal bead. The bead was mounted in a four-cycle goniometer on an optical bench, 

oriented using a laser reflection, and cut and polished with diamond paste until mirror 

finishing.  

For the internal reflection infrared spectroscopy experiments (ATR-SEIRAS), the 

working electrode was prepared from a 25 nm-thick gold thin film (Au(111)-25nm) 

(99.999%, Kurt J. Lesker Ltd.) thermally evaporated on the (111) orientation on a low 

oxygen-content silicon prism beveled at 60º (Paster Ltd, Japan). The deposition was 

accomplished in a PVD75 vacuum chamber (Kurt J. Lesker Ltd.) coating system at a base 

pressure of about 10-6 Torr. Both the gold-film thickness and the deposition rate (0.006 

nm s-1) was controlled by using a quartz crystal microbalance. Once the electrode was set 

up on the spectroelectrochemical cell, it was cleaned and electrochemical annealed by 

cycling the electrode potential at 20 mV·s−1 between 0.05 and 1.1 V for 1 h (sodium 

acetate was added up to a 10 mM concentration) Subsequently, the 

spectroelectrochemical cell was thoroughly flushed with a 0.1 M HClO4 until acetate 

anions were removed. Based on the preferential (111) orientation of the samples obtained 

with this procedure, the Au(111)-25 nm notation is adopted in this work [26].  

All the electrochemical experiments were conducted in a glass cell using a 

reversible hydrogen electrode (RHE) for pH=1 and pH=13 solutions and an Ag/AgCl (1 

M KCl) electrode (subsequently transformed to the RHE for data comparison) for pH=3 

and pH=5 as reference electrodes. A gold wire was used as counter-electrode. The 

working solution was prepared using L(+)-glutamic acid (Glu) (99% ACROS 

ORGANICS), concentrated perchloric acid (Merck Suprapur®), and ultrapure water 

(18.2 MΩ·cm, TOC 50 ppb max, Elga Vivendi). For alkaline solutions, sodium hydroxide 

monohydrate (Merck Suprapur®) was used. Buffer solutions were also prepared for some 

experiments to maintain the pH constant through the addition of glutamate using sodium 



fluoride (Merck Suprapur®). In some experiments, the working solution was prepared in 

deuterium oxide (99% D2O, Aldrich). All solutions were deaerated with Ar (N50, Air 

Liquide). Voltammetric experiments were carried out using a wave signal generator 

(EG&G PARC 175), potentiostat (eDAQ 161), and digital recorder (eDAQ e-corder 401) 

workstation. All experiments were carried out at room temperature. 

 

2.2. Computational methods 

All DFT calculations were carried out using numerical basis sets [27], semi-core 

pseudopotentials [28] (which include scalar relativistic effects), and the revised Perdew-

Burke-Ernzerhof (RPBE) [29] functional as implemented in the Dmol3 code [30]. 

Dispersion forces were corrected by the Tkatchenko and Scheffler method [31]. 

Continuous solvation effects were taken into account by the conductor-like screening 

model (COSMO)[32]. The effects of non-zero dipole moments, in the supercells, were 

canceled using external fields [33]. Proton-coupled electrons transfers were modeled 

employing the computational hydrogen electrode formalism [34].  

The Au(111) surface was modeled using a big and thick enough periodic supercell 

as for modeling chemisorbed glutamate species with and without the amino group 

protonated under neutral total charge conditions. The model comprises 72 Au atoms (six 

layers of metal atoms) and a vacuum slab of 20 Å. The most internal 24 Au atoms (two 

layers of metal atoms) were frozen in their bulk crystal locations, meanwhile, the 

remaining more external 48 Au atoms were completely relaxed jointly with the 

adsorbates. The shortest distance between periodic images was in the order of 8.34 Å. 

Optimal adsorbent/adsorbate configurations were searched for using numerical basis 

sets of double-numerical quality. For this phase of the calculations, the optimization 

convergence thresholds were set to 2.0×10-5 Ha for the energy, 0.004 Ha/Å for the force, 



and 0.005 Å for the displacement. The SCF convergence criterion was set to 1.0×10-5 Ha 

for the energy. Assuming the previously optimized configurations, energies were 

estimated using numerical basis sets of double-numerical quality plus polarization. In this 

case, the Self Consisted Field (SCF) convergence criterion was set to 1.0×10-6 Ha for the 

energy. 

Orbital cutoff radius of 3.1, 3.7, 3.3, and 4.5 Å were always used in the numerical 

basis set for H, C, O, and Au atoms, respectively. Brillouin zones were always sampled, 

under the Monkhorst-Pack method using grids corresponding to distances in the 

reciprocal space of the order of 0.04 1/Å. Convergence was always facilitated introducing 

0.002 Ha of thermal smearing, though total energies were extrapolated to 0 K. The value 

78.54 was taken as the dielectric constant for water in the continuous solvation model. 

 

3. Results and discussions 

3.1. Voltammetric behavior 

Given that Glu presents several acid/base groups, with significantly different pKa 

values (2.17 for the carboxylic group close to the amino group, 4.25 for the second 

carboxylic group, and 9.67 for the amino group), the dominant glutamate species 

interacting with the surface can depend on the solution pH. Thus, four glutamate species 

can be found in solution, whose ionization are pH-dependent. At pH<2.17, the amino 

group is protonated, forming a cation. Between 2.17 and 4.25, the deprotonation of the 

-carboxyl group gives rise to a neutral zwitterion, with the amino group still protonated. 

Between 4.25 and 9.67, the second carboxylic group becomes deprotonated, yielding an 

anion with a -1 charge. Finally, at pH> 9.67, the amino group loses the acidic proton, 

becoming a double negative anion. For this reason, the adsorption behavior of glutamate 

species on the Au(111) electrode was studied using solutions with pHs 1, 3, 5, and 13, 



each value inside a different region of stability of the species. The electrolytes used to 

prepare the solutions should fulfill two requirements: enough buffer capacity, to avoid 

pH changes, and absence of specific adsorption so that the interaction of glutamate 

species can be studied without interferences. The prepared solutions were 0.1 M HClO4 

(nominal pH=1), 2.99×10-2 M HClO4 + 4.84×10-2 NaF (pH=3), 1.70×10-6 M HClO4 + 10-3 

M NaF (pH=5) and 0.1 NaOH (pH=13). Being HF a weak acid with pKa=3.15, the 

combination of HClO4 and NaF gives rise to the formation of HF/F- buffered solutions, 

which are able to maintain the solution pH while the glutamic acid concentration is 

increased. Besides, no specific adsorption takes place in these buffer solutions, because 

the interactions between the HF/F- pair and the gold surface are weak and compete with 

those of the ClO4
- anions for compensating the increase in the positive charge density on 

the electrode surface as the potential is made more positive.  

The voltammetric study is divided into two regions, the so-called double layer 

region (E<1.2 V) and the OH adsorption and oxidation region (E>1.2 V) [35-37]. In the 

double-layer region, the behavior under acidic conditions (pHs 1, 3, and 5) is different 

from that observed in alkaline media [38, 39]. Under acidic conditions and in the absence 

of Glu, the voltammetric profile is almost featureless (Figure 1). In spite of that, it should 

be noted that the behavior of the Au(111) surface is complex. After annealing, the surface 

is reconstructed, displaying a (22×√3) structure (also termed as herringbone structure) 

[40, 41] and, when the electrode is immersed in the solution at low potentials (close to 0 

V in the RHE scale), this reconstruction is maintained. When the electrode potential is 

increased, the reconstruction is lifted and a nominal (1×1) structure is obtained [42]. The 

transition between both structures is triggered by the charge [43], so that a positive surface 

charge induces the lifting of the reconstruction, whereas negative values cause the 

progressive formation of a reconstructed surface. The kinetics of these transition 



processes between both structures are slow, but, in general, the lifting of the 

reconstruction is significantly faster than the reconstruction process [44]. Due to this slow 

kinetics, two different potentials of zero charge (pzc) for the unreconstructed (pzcu) and 

the reconstructed (pzcr) surface can be measured (as shown in Figure 1). Both values are 

pH-independent in the SHE scale. For low electrolyte concentrations, and according to 

the Stern model of the double layer, the pzc is located in the minimum of the capacity 

curve[45], which translates to a minimum in current in the voltammetric profile. As the 

negative-swept does not experience a fast surface-reconstruction phenomenon, the 

minimum in the voltammetric profile allows a fast estimation of the pzc when low 

concentration electrolyte solutions are used. However, in this case, the slow kinetics of 

the surface reconstruction processes results in an asymmetrical profile with respect to the 

current axis. The voltammetric profiles show, also in this case, some features that can be 

related to the non-specific anion adsorption on the surface, which obviously, depends on 

the surface state. As expected, those non-specific anions adsorption processes take place 

at potentials higher than the pzc, and shift to higher potential values in the RHE scale as 

the pH increases. Despite the complexity of the profile, at pH=3, a small local minimum 

can be observed in the negative scan direction. This minimum is more clearly resolved at 

pH=5 because the total electrolyte concentration is lower. The position of the minima 

coincides with the measured values of the pzcu using capacitance measurements [45-47], 

which indicates that the surface at those potentials in the negative scan direction is still 

unreconstructed. In the positive scan direction, the minima cannot be observed, probably 

because of the overlapping of the minimum related to the pzcr with the signal 

corresponding to the adsorption of OH or electrolyte anions. 
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Figure 1. Voltammetric profiles of the Au(111) electrode after the addition of different Glu concentrations 

in A) 0.1 M HClO4 (pH=1); B) 2.99×10-2 M HClO4 + 4.84×10-2 NaF (pH=3) and C) 1.70×10-6 M HClO4 + 

10-3 M NaF (pH=5). Scan rate: 20 mV s-1. The vertical lines mark the position of the pzcu (dashed line) and 

pzcr (dotted line) of the Au(111) surface. 

After the addition of Glu, even in low concentrations, the voltammetric profiles 

of the Au(111) electrode show significant changes when compared to those obtained in 

its absence in acidic media. The addition of Glu results in a complex voltammetric profile, 

as a result of the interaction of glutamate with the Au(111) surface. The observed signals 

between 0.4 and 1.2 V are related to the specific adsorption of glutamate species on the 

surface. As expected, the signals shift to lower potential values as the total Glu 

concentration increases. In the positive scan direction, a sharp peak appears in the initial 

stages of the glutamate adsorption process. This peak is associated with the lifting of the 

reconstruction which is triggered by the surface charge [48, 49], implying that the surface 

charge at a constant potential for a given pH increases as the total Glu concentration in 



solution increases. Apparently, the adsorption process of glutamate is completed at 1.2 

V, which is the potential at which OH adsorption and surface oxidation processes take 

place on the unmodified surface.  

On the negative scan direction, the desorption of the glutamate species 

accumulated on the surface occurs. In this case, only a complex wave without a significant 

peak is observed, indicating that the reconstruction is not taking place at a significant rate 

while glutamate is still adsorbed. The presence of adsorbed species usually stabilizes the 

(1×1) structure by lowering its surface energy [43]. In the second scan, the peak 

associated with the lifting of the reconstruction is always smaller than that recorded after 

flame annealing, a clear indication that the reconstruction process is slow (during the time 

elapsed in the potential region where glutamate species are not adsorbed, a fully 

reconstructed surface has not been achieved). It should be noted that the voltammetric 

profiles are symmetrical at potentials higher than the peak related to the lifting of the 

reconstruction in the positive scan (figure S1) (i.e., for E>0.65 V, E>0.68 V, and E>0.75 

V for solutions containing 0.01 M Glu in pH=1, pH=3, and pH=5, respectively). This fact 

indicates that the adsorption process of glutamate species is fast and that the surface 

structure in this region is the same in the positive and negative scan directions. 

The shift with pH of the signals related to glutamate adsorption can be used to 

determine the stoichiometry of the reaction, mainly, the ratio of the number of exchanged 

electrons to the number of protons involved in the adsorption process. For an accurate 

determination, the concentration of the main solution species should be kept constant and 

the analysis should be made in a pH range comprising several pH units. In this case, such 

a kind of accurate quantitative determination cannot be made for two reasons: i) the two 

first pKa of Glu are relatively close and ii) there are not available buffered solutions for 

pH>5 in which the anions do not interact specifically with the surface. Despite that, a 



qualitative analysis can be performed. Carboxylic acids are usually adsorbed through the 

carboxylate groups in a bidentate configuration in which both oxygen atoms are bonded 

to the surface. If the nature of the species and the atomic arrangement of the surface atoms 

allow it, the molecule can become attached to the surface by several carboxylate groups, 

as happens for instance for citrate [21], which can bond to (111) surfaces by the three 

carboxylate groups. Glu could be, simultaneously, attached by both carboxylate groups. 

In this case, the proposed reaction when pH<pKa,1 is  

 
   

   

+

2 32

+ + -

2 32

HOOC- CH -CH NH -COOH 2Au

Au-OOC- CH -CH NH -COO-Au 2H 2e



 
  (1) 

This adsorption process should move in the SHE scale 0.059 V per pH unit. For pH 

between 2.17 and 4.25, where the main species in solution is the zwitterion, the proposed 

reaction is: 

 
   

   

+

2 32

+ + -

2 32

HOOC- CH -CH NH -COO 2Au

Au-OOC- CH -CH NH -COO-Au H 2e

 

 
  (2) 

with an expected change of 0.030 V per pH unit. Finally, in the pH range 4.25 to 9.67, 

the reaction is 

 
   

   

+

2 32

+ -

2 32

OOC- CH -CH NH -COO 2Au

Au-OOC- CH -CH NH -COO-Au 2e

  


  (3) 

This process should take place at constant potential in the SHE scale. To perform the 

analysis, the potential for the peak related to the lifting of the reconstruction for 0.001 M 

Glu will be used, because it takes place at a constant glutamate coverage. The peak 

position in the SHE scale is plotted in Figure 2. These points, which are in different 

regions, will be used to establish the trend lines (red lines in Figure 2) according to the 

proposed stoichiometry in each region. As can be seen, these lines intersect, within the 

error of the experiments, at the pKa values, validating the proposed mechanism.  
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Figure 2. Potential, in the SHE scale, of the peak associated with the lifting of the reconstruction for 

[Glu]=0.001 M vs. pH. The red lines display the expected trends of the peak potential according to the 

different equations. The vertical lines mark the positions of the pKa values. 

  

Additional confirmation of the proposed stoichiometry can be obtained under 

alkaline conditions. As can be seen in Figure 3, in the absence of Glu, the peaks at 1.05 

are related to OH adsorption [38, 39]. When Glu is added to the solution, the profile in 

the double-layer region is almost constant (E<1.0 V), and no additional processes are 

observed. This indicates that glutamate species are not adsorbed. This result is expected 

from the previously investigated potential dependence of the glutamate adsorption 

process. Under the proposed potential independent adsorption in the SHE scale for 

pH>pKa,2, derived from the behavior in acidic solutions, glutamate species should not be 

adsorbed at pH=13, because the expected onset potential would be ca. 1.2 V. In fact, the 

surface presents a negative charge for this region at this pH, given that both pzcu and pzcr 

values are located at E>1.2 V vs. RHE. Owing to the high concentration of OH- and its 

strong surface interaction, the adsorption of OH dominates over that of glutamate species, 

and this latter process cannot be observed. An additional feature of this voltammetric 



behavior is that the oxidation process of Glu can be observed at potentials above 1.0 V. 

The process seems to be triggered by the adsorption of OH. In fact, the characteristic 

signals related to OH adsorption are still visible, especially for low Glu concentration. 

This observation clearly indicates that adsorbed OH is involved in the oxidation process.  
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Figure 3. Voltammetric profile of the Au(111) electrode after the addition of different Glu concentrations 

in 0.1 M NaOH (pH=13). Scan rate: 20 mV s-1. 

   

From these results, it is clear that Glu can be oxidized at high potential values, 

coinciding with the oxidation of the gold surface. Figure 4A shows the voltammetric 

profiles of the Au(111) oxidation region at different acidic pH values in the presence and 

absence of Glu. When the solution is glutamate-free, two peaks can be perfectly 

distinguished. The first one corresponds to the transfer of one electron for the formation 

of a complete OH layer, whereas the second one corresponds to the transformation of this 

layer to the oxide Au-O layer[36]. There are small changes with pH, as reported 

previously, though the overall shape is maintained. The OH adsorption process is 

competitive with the weak adsorption processes of the other solution anions, such as ClO4
- 

and F-. The origin of the small changes is probably the concentration differences of the 

supporting electrolytes to maintain the buffer properties. It has been proposed that F- is 



more selectively adsorbed on the Au electrodes than ClO4
- [48, 50], which can justify the 

small diminution of the OH adsorption peak at pH=5. Similar changes are observed for 

the peak related to the formation of the oxide layer. In the negative scan, the desorption 

of the Au-O layer takes place in a single peak (with a shoulder at low potentials), which 

is a clear indication that the formation of this oxide layer is irreversible. The overall shape 

of the voltammogram is maintained, and the differences in the shape can be explained by 

the differences in the solution properties.   
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Figure 4. Voltammetric profiles for the Au(111) electrode in the oxide region in A) acidic values and B) 

alkaline solutions in the absence (dashed lines) and the presence of 0.001 M Glu (full line). Scan rate 20 

mV s-1. 

 

Thus, when Glu is added, the onset for any process is displaced to more positive 

potentials, and the currents and the overall charge, under acidic conditions, are higher 

than those recorded in the absence of Glu in the positive scan direction. On the other hand, 

the reduction peak is significantly smaller. Both combined results indicate that glutamate 

species are being oxidized in this high potential region. Moreover, the oxidation process 

appears to be connected with the adsorption of OH. Additionally, as the pH increases, the 

onset shifts to lower potential values, and the overall charge related to this process 

increases. These differences can be related to the surface charge effect on the OH and 

glutamate species adsorptions. Fixed the potential in the RHE scale, as pH increases, the 



surface charge becomes less positive. As a result, the glutamate species are less strongly 

adsorbed. However, the driving force for the OH adsorption process remains constant, 

given that the surface charge effect is counterbalanced by the OH- concentration increase. 

Thus, for a given potential in the RHE scale, as the pH increases, the adsorption of OH 

becomes stronger in comparison with that of glutamate species, which favor the oxidation 

of glutamate in an OH mediated process. Another important consequence of the observed 

behavior is that the formation of the Au-O layer blocks the oxidation. As can be seen in 

Figure 4, the currents for the upper potential limit of the scan diminish significantly and 

no oxidation currents are observed in the negative scan direction. This behavior in acidic 

solutions is also confirmed under alkaline conditions (Figure 4B). In this case, since 

glutamate is not adsorbed, the onset of the oxidation coincides with the onset of OH 

adsorption. Moreover, the currents for the oxidation are significantly higher because the 

absence of a glutamate layer leads to an increase of the OH coverage at a constant 

potential in the RHE scale, which leads to higher currents.   

To get additional insight into the role of adsorbed OH in the process, voltammetric 

scans with different upper potential limits were recorded and compared to the behavior 

obtained in the absence of Glu (Figure 5). At pH=5, the oxidation wave for Glu has two 

overlapping peaks, being the onset for the oxidation ca. 1.4 V (Figure 4A). In the absence 

of Glu, an OH layer is already adsorbed at these potentials, but the presence of the 

glutamate layer prevents the adsorption of OH. When the upper potential limit is 1.45 V 

(Figure 5A), oxidation currents, and a small hysteresis between the positive and negative 

scan directions are observed. When the upper potential is increased above 1.5 V, currents 

in the negative scan direction are almost negligible, indicating that a fast transformation 

of the surface is taking place. This behavior can be explained as follows. As the glutamate 

layer is desorbed and replaced by the OH layer, the surface behavior tends to approximate 



that in the absence of Glu. At potentials above 1.4 V, the adsorbed OH layer is 

transformed into Au-O, which is inactive for the oxidation. This process is slow, and thus 

the oxide reduction peak in the negative scan direction contains less charge than in the 

absence of Glu. The behavior is even more clear at pH=13 (Figure 5B). At this pH value, 

the oxidation onset coincides with that of the OH adsorption. When the upper potential is 

set below 1.2 V (the potential at which the Au-O formation begins in the absence of Glu), 

significant oxidation currents can be recorded in the negative scan direction. Under these 

conditions, the OH reduction peak cannot be distinguished because it overlaps with large 

oxidation currents. For higher upper potentials, currents in the positive scan direction 

begin to diminish due to the progressive formation of the Au-O layer, which leads to small 

currents in the negative scan direction. As before, the presence of Glu delays the 

formation of Au-O because some OH species are being consumed in the glutamate 

oxidation reaction. For this reason, the reduction peak is smaller than that recorded for 

the same upper potential limit in the absence of Glu.  
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Figure 5. Voltammetric profiles for the oxide region of the Au(111) in A) pH=5 and B) pH=13 in the 

absence (dashed lines) and the presence of 0.001 M Glu (full line) with different upper potential limits. 

Scan rate 20 mV s-1 

 

 

 



  

3.1.1.  Gibbs excesses  

Additional information on the glutamate adsorption process can be obtained from 

the thermodynamic analysis of the obtained voltammetric results. The procedure has been 

already described [20, 21]. However, because of the surface reconstruction of gold, only 

the negative scan direction of the voltammograms is taken, given that the surface state 

must not change along with the studied processes. The excess determination begins with 

the integration of the profiles displayed in Figure 1, which correspond to glutamate 

desorption on the (1×1) surface following the procedure explained in reference [21]. In 

this way, potential vs. charge density curves can be obtained. To determine the surface 

charge, the integration constant has to be known and used as a reference. Since at the 

lowest potential, glutamate species are desorbed, the charge should be the same as in the 

supporting electrolyte. For this reason, zero is assigned as the nominal charge to the lower 

potential limit for all curves.  

Charge vs. potential under acidic conditions is displayed in Figure 6. For pH=5 

(Figure 6C), all the curves converge at the highest potential, a clear indication that the 

glutamate adlayer has been completed. However, for pHs 1 and 3, the curves do not 

converge. Different charge values at the upper limit can be due to one of two reasons: 

either the adlayer is not complete or a faradic process contributes to the measured charge. 

When the adsorption process has not been completed in the upper potential, a progressive 

convergence of all the curves should be observed when the potential approaches the upper 

limit. However, this is not the case, because the difference increases with potential, 

especially for the higher Glu concentrations, indicating that a faradaic process is 

contributing to the measured charge. This implies that glutamate species are being 

oxidized at a very low rate in the upper potential region, though the currents are too low 



to be detected in a normal voltammetric scan. Moreover, this weak oxidation process is 

pH-dependent, given that, as pH increases, the total contribution of the oxidation process 

diminishes, because the difference in charge between the higher and lower Glu 

concentration diminishes, being negligible at pH=5. Under these conditions, the 

thermodynamic analysis can only be carried out for pH=5. 
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Figure 6. Charge vs. potential for the Au(111) electrode for different Glu concentrations in A) pH=1, B) 

pH=3 and C) pH=5. 

   

 

Once the charge vs. potential curves have been obtained, surface excesses for 

glutamate species at pH=5 can be calculated using the procedure described in [21]. It 

should be stressed that the obtained values correspond to the total sum of the excesses of 



all possible glutamate species. The curves (Figure 7) have the typical behavior observed 

for other anions. At this pH value, the adsorption onset is 0.3 V, meanwhile, the adlayer 

is completed at 1.2 V, where all curves for the different Glu concentrations merge. At this 

potential, the measured maximum excess is 2.7×10-14 ions cm-2, which is equivalent to a 

surface coverage of 0.18. This value is very similar to that obtained for citrate [21]. Both 

citric acid and Glu have the main chain with two terminal carboxylic groups separated by 

three carbon atoms. Thus, if both molecules interact with the surface mainly through 

terminal carboxylate groups, adsorption energies and geometries will be very similar, and 

thus coverages should be also the same. On the other hand, Gibbs excesses seem to be 

quasi-independent from Glu concentration in the potential range 0.260 < E < 0.585 V, 

which suggests that the surface-glutamate interaction at low coverages does not follow 

the typical behavior of adsorbed anions. This feature appears also when citrate is adsorbed 

on Au(111) [21, 51].  
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Figure 7. Gibb excesses vs. potential for the different Glu concentrations at pH=5. 



  

Form surface excesses, charge transfer numbers for the adsorbed species can be 

calculated using the cross differential of the electrocapillary equation [52]  according to  

' ln1 1 cRT
n

F F E F Em s s

s m       
        

G       
   (4) 

where n’ is the charge number at constant chemical potential, that is, the reciprocal of the 

Essin-Markov coefficient. The most reliable values can be obtained in the region where 

there is a large increase of the excesses with charge or concentration. Two electrons are 

transferred per molecule in the central potential region, where this latter condition is 

fulfilled, meanwhile, a higher number for lower and higher potentials is obtained. This 

result is consistent with the proposed reaction (3), implying that glutamate species can 

become attached to the surface through both carboxylate groups.  
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Figure 8. Charge number vs. applied potential at pH=5 for 10-3 M Glu  

 

3.2. FTIR spectroscopy. 

To identify the nature of the bonds involved in the glutamate adsorption on the 

Au(111) surface, FTIR experiments were conducted. Having advantages with respect to 

the external reflection mode, such as the minimal interference in the signal from bulk 

species and enhancement of the absorption due to the surface-enhanced infrared 



absorption (SEIRA) effect, the attenuated total reflectance mode was used for this 

purpose. Under this mode, changes in the closest layers of the interphase to the electrode 

surface (solvent as well as other species) can be easily detected [53, 54].  

 

Figure 9. ATR-SEIRA spectra for an Au(111)-25nm thin film electrode in x mM Glu + 0.1 M HClO4  

(pH=1) solutions prepared in water (A-C) and D2O (D) where x is 0.1 (A), 1 (B) and 10 (C and D). The 

spectrum obtained at 0.1V vs RHE in the same working solution was taken as the reference. 100 

interferograms were collected at each potential.  

 

 The different spectra for different Glu concentrations in H2O and D2O are 

displayed in Figure 9 and the band assignment is summarized in table 1. Amino acid 

adsorbed bands appear between 1300-1400 cm-1, corresponding to vibrational modes 

combining the symmetric OCO stretch of the carboxylate with bending modes involving 

CHx and NH3 groups [55]. Additionally, water bands can be detected in the O-H 

stretching region between 3000-4000 cm-1 (not shown) and O-H bending region between 

1600-1700 cm-1. An intense absorption band is also observed around 1100 cm-1, which is 

related to the asymmetrical tension of the Cl-O bond in co-adsorbed perchlorate anions. 



Water and perchlorate related bands have frequencies and shapes remarkably similar to 

those observed in amino-acid-free perchloric acid solution (figure S1-1) [56], which 

suggests that adsorbed glutamate species are co-adsorbed with perchlorate.  

Table 1: Bands assignment in the region between 1300-1400 cm-1. 

Modes /cm-1 Refs 

Sym. str. OCO + bend. CCH + bend. NH3 + bend. CH2 + 

bend. COH 

1315 cm-1 [57, 58] 

 Sym. str. OCO + bend. HCN + bend. NH3  1357 [55]  

Sym. str. OCO + bend (CCH and CH2) 1388 [55] 

 

Two electrode potential regions can be distinguished in the spectra (Figure 9). At 

potentials below 0.5 V, adsorption bands are nearly absent from the spectra. However, at 

higher potentials, positive bands at 1315, 1357, and 1388 cm-1 appear, corresponding to 

the combined modes summarized in table 1, increasing their intensity with the electrode 

potential. The appearance of these bands coincides with the adsorption onset observed for 

glutamate.  

In Figure 9C, a negative band at ca. 1730 cm-1 can also be observed. This band 

can be assigned to the carbonyl CO stretch of cationic amino acids (NH3
+-R-COOH) in 

solution [10, 14, 59-61]. The negative sign of the band indicates that some carboxylic 

groups are adsorbed at the reference potential. Since these bands appear close to the 

bending modes of OH in water, a better resolution can be obtained in D2O (Figure 9D and 

SI-2). The spectra in deuterium oxide (Figure 9D) presents the same bands as those 

observed in water, though with a better defined negative band at 1720 cm-1, as has been 

observed for carboxylic acids in D2O [53, 55, 57, 58]. To verify that the band at 1720 

cm-1 is related to the carboxylic groups, time-dependent ATR-SEIRA spectra were 



collected for a gold thin film electrode in 10 mM glutamic acid + 0.1 M HClO4 in D2O 

after dosing glutamic acid (figure SI-3) at E=0.1 V. For E = 0.1 V,  the Au(111)  surface 

has a negative surface charge, promoting the interaction of the protonated amino group 

(NH3+) with the surface. As result, the carboxylic group close to the protonated amino 

group (HOOC-R-NH3+-COOH) presents a configuration which is not parallel to the 

surface, causing the vibration mode stretching ν (C = O) to be active in infrared, and the 

appearance of a growing positive band at 1724 cm-1, which is associated with the 

carboxylic groups in the glutamate species. Thus, the presence of the negative band at 

1720 cm-1 in the spectra of figure 9D clearly indicates that the carboxylic groups are being 

adsorbed and are involved in the adsorption process of the glutamate species, that is, 

carboxylic groups are in contact with the surface.  

Carboxylic groups can be adsorbed in the monodentate and bidentate 

configuration. In the monodentate form, a band in between 1700-1500 cm-1, associated 

with the asymmetric O-C-O stretching mode of the carboxylate group, should be 

expected. However, in the bidentate configuration, the dynamic dipole for the as (OCO) 

mode is parallel to the electrode surface, and the corresponding band cannot be observed, 

as a result of the surface selection rule [59]. No bands can be observed in this region in 

Figure 9A-C, though they may be masked by OH related bands. The absence of these 

bands in D2O (Figure 9D) unequivocally indicates that carboxylate groups are adsorbed 

in the bidentate configuration. 

Through carboxylate groups under bidentate configuration, glutamate can be 

adsorbed through only one or both of these groups. To explore this end, potential-

difference ATR-SEIRAS spectra scanning at 2 mV s-1 from 0.1 to 1.7 V in the 10 mM 

glutamic acid solution were obtained (Figure 10). The spectral bands at 1315, 1357, and 

1388 cm-1 for potentials below 1.1 V are similar to those displayed in Figure 9A-C. The 



1650 and 3400 cm-1 bands correspond to the bending and stretching modes of water 

molecules with strong hydrogen bonds, and the increase in the glutamate coverage by 

increasing the electrode potential gives rise to additional bands between 3000-2800 cm-1, 

as seen with other amino acids (glycine) [7, 8]. These signals correspond to NH stretching 

when one H atom of the ammonium group is involved in a hydrogen bond with water. 

However, it is important to highlight that no bands are observed between 2500-2700 cm-1 

and around 2000 cm-1. These bands, which are present in the ATR-SEIRA spectra of 

adsorbed bioxalate [60] and bimalonate [62] on gold, are associated with hydrogen bond 

formation between neighbor adsorbed carboxylic groups or between these groups and 

water molecules [60, 62]. These short molecules cannot be adsorbed through both 

carboxylate groups for steric reasons, and thus, the non-adsorbed carboxylic groups can 

form hydrogen bonds either with water molecules or neighboring adsorbates. But the 

absence of these bands for longer molecules supports the proposed adsorption mode in 

which adsorbed glutamate is bonded to the surface through both carboxylate groups. 

Above 1.1 V, the signals corresponding to adsorbed glutamate disappear, indicating that 

glutamate is being desorbed. The absence of bands around 2170 cm-1, which corresponds 

to the stretching of C–N bond and can be associated with the presence of adsorbed cyanide 

as a product of decarboxylation [16, 63], indicates that the process does not involve a 

breakdown of the amino acid.  



 

Figure 10. Potential-difference ATR-SEIRAS spectra of a potential scan for an Au(111)-25nm thin film 

electrode in 10 mM Glu + 0.1M HClO4 in water. The spectrum at 0.1V vs RHE in the same working solution 

was taken as the reference, adding 104 interferograms at each potential with spectral resolution 8cm-1. 

 

3.3. DFT calculations. 

Plausible configurations of glutamate species adsorbed on the Au(111) surface, 

with one and two dehydrogenated carboxylic groups attached to the surface in the 

bidentate configuration, under neutral total charge conditions, were found using DFT 

(Figure 11). For each relevant configuration, the free energy of the corresponding 

adsorption process was estimated to value plausibility. From the cationic form of Glu 

(protonated in the amine group), under acidic conditions, the chemisorbed state displayed 

in Figure 11A is favorable by 0.67 eV, which involves the bidentate attachment to the 

surface of the proximal carboxylic group to the amine group (the one having the lower 

pKa). Later, and under less acidic conditions (higher pKa), which favor the 



dehydrogenation of the other carboxylic group, the configuration displayed in Figure 11B 

can be obtained, which is unfavorable only by 0.05 eV. Thus, this figure indicates that 

the cationic form of Glu can rest simultaneously attached to the surface through both 

dehydrogenated carboxylic groups in the bidentate configuration. Finally, under more 

alkaline conditions (the highest pKa), the protonated amine group can be deprotonated. 

Figure 11C shows that a stationary chemisorbed state in which the amine group and the 

two dehydrogenated carboxylic groups attached to the surface, though this configuration 

is unfavorable by in the order of 0.55 eV. This unfavorable value can be at least in part 

explained by the fact that the carbon backbone of the molecule rest significantly twisted 

when both carboxylic groups and also the amine group are simultaneously coupled to the 

specific layout of the atoms exposed by the Au(111) surface. 

Interestingly, for the case in which only the proximal carboxylic group to the 

amine group is dehydrogenated, it was found that, in the absence of dispersion forces, the 

bidentate attachment of the carboxylic group to the surface gives rise to a perpendicular 

adsorbate to the surface. Under these conditions, an unfavorable tension is originated 

when trying to attach the second dehydrogenated carboxylic group. However, when 

dispersion forces were considered, a much more horizontal adsorbate configuration was 

obtained (Figure 11A). This much more horizontal configuration points to a much more 

favorable evolution to the chemisorbed state displayed in Figure 11B. Thus, the 

consideration of dispersion forces is essential to computationally value these adsorption 

processes. 

According to the calculations, the adsorption of the protonated in the amine group 

specie through both carboxylic groups in the bidentate configuration, under standard 

(ideal) conditions, would take place for E>0.05 eV. Considering that, from this result, it 

can be calculated that, under the experimental conditions, the equilibrium potential for 



this adsorption process would shift ca 0.3 V, and that this value is of the order of the 

observed onset for this process at pH=1, it can be concluded that both experimental and 

computational results are mutually consistent. 

 

Figure 11. Adsorbed glutamate configurations on the Au(111) surface under neutral total charge conditions. 

With the amine group protonated (A and B) and with the protonated amine group deprotonated (C), with 

one (A) and two (B and C) dehydrogenated carboxylic groups attached to the surface in the bidentate 

configuration. 

 

4. Conclusions. 

This study demonstrates how a selected combination of electrochemical 

experiments, FTIR spectroscopy, and DFT calculations can be used to characterize the 

interaction of glutamate species with the Au(111) surface. Electrochemical experiments 

enable the identification of hydrogenation states, coverages, and number of electrons 

exchanged, spectroscopic experiments provide evidence of the presence of functional 

groups, and DFT calculations provide plausible adsorbent-adsorbate configurations 

consistent with the experiments. Electrochemical results reveal that glutamate adsorption 

on Au(111) requires a  slightly negative potential with respect to that of the zero charge, 

and exchanges two electrons per adsorbed molecule. Thus, both carboxylate groups 

should deprotonate before adsorption, giving rise to a complex potential dependence with 

pH.  The FTIR spectral evolution with the potential is consistent with an adsorption mode 

in which both carboxylate groups are bonded to the surface in a bidentate configuration 

(with both oxygen atoms attached to the surface). DFT calculations confirm this 



adsorption mode, being the addition of dispersion forces essential to validate theoretically 

this interaction.  
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