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a b s t r a c t 

Adequate electrochemical characterization of electrode material/biofilms is crucial for a comprehensive understanding 

and comparative performance of bioelectrochemical systems (BES). However, their responses are greatly affected 

by the metabolic activity and growth of these living entities and/or the interference of electrode wiring that can 

act as an electroactive surface for growth or constitute a source of contamination by corrosion. This restricts the 

meaningful comparison of the performance of distinct electrode materials in BES. This work describes a methodology 

for simultaneous electrochemical control and measurement of the microbial response on different electrode materials 

under the same physicochemical and biological conditions. The method is based on the use of a single channel 

potentiostat and one counter and reference electrodes to simultaneously polarize several electrode materials in a 

sole bioelectrochemical cell. Furthermore, various strategies to minimize wiring corrosion are proposed. The proposed 

methodology, then, will enable a more rigorous characterization of microbial electrochemical responses for comparisons 

purposes. 

• Experimental Set-up allows to polarize several working electrodes at the same time. 
• Chronoamperometry can be performed simultaneously with a potentiostat. 
• The physicochemical and biological conditions in each working electrode will be exactly the same 
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Method details 

Electroactive biofilms are of vital importance in the context of fundamental research questions 

and for their potential exploitation in engineering systems, such as bioelectrochemical systems (BES) 

[1] . Various electrochemical techniques, like chronoamperometry (CA) and cyclic voltammetry (CV), 

are powerful tools for the study of extracellular electron transfer (EET) of electroactive bacteria [2] .

Direct correlation between the biofilm development and sustained electricity generation along time 

[3] could be established from analyzing changes in CA and CV response and biofilm coverage for 

a given electrode. Indeed, the electrode material has a crucial role on the growth of electroactive

biofilms and their EET and bioelectricity production capabilities [4] . 

In order to perform CA and CV analysis for studying the electrode-bacteria interaction, it is

required to set-up a three-electrode with: a working electrode (WE), a reference electrode (RE), and a

counter electrode (CE). With this set-up, polarization curves can be recorded by using a potentiostat,

where 1) the potential difference between WE and RE is controlled, and 2) the electrical current flow

between WE and CE is measured [5] . This three-electrode system is called Microbial Electrolytic Cell

(MEC). 

MECs are constructed using a wide variety of electrode materials and in an ever-increasing

diversity of configurations. These systems are operated under several physicochemical conditions that 

include differences in temperature, pH, final electron acceptor, electrode surface area, reactor size, 

and operation timescale. In order to compare the results from electrochemical analysis, it is necessary

to take into account different parameters such as reference states, internal resistance or power 

densities derived from polarization curves. Such data have been generally obtained using different 

experimental conditions, materials and/or configurations, making the interpretation and comparison 

of results among these systems difficult [6] . 

The characterization of the microbial electrochemical response of electrode material/biofilms 

presents various important problems. First, in contrast to inorganic catalytic systems, microbes are 

living entities and thus may change over time in their composition (variable microbial population) 

and activity. Therefore, the physiological state, growth phase, and “history” of the microorganisms 

should be taken into consideration. In addition, planktonic bacteria also play an important role on

the bioelectrocatalytic reaction [7] . Hence, it is very difficult to replicate exactly the same biological

conditions, like number of bacteria, metabolic activity and growth phase. This fact remarkably 

hampers the reproducibility of the results of a given MEC and makes it practically impossible to

compare the performance of different materials that either have been characterized in different cells 

or in the same cell but under different operation conditions. 

Secondly, a deoxygenated solution is necessary in biological chamber, to keep anaerobic 

microorganisms viable and to avoid oxygen-related reduction currents/peaks in CVs that could 

hinder the identification of bioelectrochemical processes. Electrochemical characterization of electrode 
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Fig. 1. Diagram of the MEC and the connections with the potentiostat and the multimeter. 
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aterials requires them to be immersed in an oxygen-free aqueous electrolyte, so all external

onnection by using wires or, alternatively, wire-material connectors (like conductive adhesives) are

nevitably exposed to water. In other cases, although direct exposure of wire-material junction is

voided, the electrolyte can penetrate through the pores of the material to reach the junction. This

ontact with the medium usually causes the corrosion of wires and/or connectors, thus, releasing

edox active and/or non-biocompatible species that can interfere the bioelectrochemical response of

he bacteria. Moreover, corrosion may enhance the electric resistance of these elements, affecting the

easurements. Consequently, the recorded electrochemical response for an electrode material/biofilm

ystem might be remarkably affected by corrosion of connecting elements, again hampering the

eproducibility and comparability of the electrochemical behavior of materials and systems. 

To face these problems, this work presents a new method for the meaningful and comparative

haracterization of the microbial electrochemical response of different electrode materials [8] . The

ethod is based on the simultaneous electrochemical control and characterization of various distinct

aterial/electroactive bacteria systems in the same reactor, under identical physicochemical and

iological conditions, and minimizing wiring-derived corrosion effects. 

The method essentially requires the use of a (i) single-channel potentiostat, (ii) one counter

lectrode and (iii) one reference electrode and (iv) several working electrodes connected by (v) a

uitable wiring. All the electrodes are immersed in (vi) a sole bioelectrochemical cell with (vii)

acterial growth in a deoxygenated medium, and their respective electric signals (current, potential,

esistance, etc.) are registered by (viii) proper measuring equipment. These elements are schematized

n Fig. 1 and operate as a conventional MEC capable to perform classical electroanalytical techniques

5] . 

(i)-(iv) The single-channel potentiostat is used to impose a fixed or varying potential, enabling to

egister the overall produced electrical current. Apart from the multiple target working electrodes,

 blank electrode showing a well-known characteristic response is also recommended to validate
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the measurements. The wires connecting each of the working electrode are all merged with the

working terminal of the potentiostat. In contrast, the counter and reference electrodes are individually 

connected to their corresponding pins. During electrochemical measurements, the potentiostat 

displays the potential difference between the working terminal and the reference electrode. Indeed, 

the electrical current recorded by the potentiostat adds up all the individual currents passing through

each working electrode; hence, such value does not correspond to the real single value for each of the

working-reference electrode potential systems. 

(v) Wiring the electrode materials entails the creation of conductive, mechanically stable and 

corrosion-resistant wire-material junctions. The type of wire-material connection will depend on the 

nature and properties of both the wire and the material, emphasizing their corrosion susceptibility 

and porosity, respectively. The porosity of the material may play a role, by facilitating the penetration

and accessibility of the electrolyte to the wire or junction, and/or by adsorbing and concentrating the

released corroded redox-active species on the surface of the electrode. Overall, to avoid corrosion 

interferences in the presented method, we propose the following two-step strategy for wiring: 

promotion and subsequent protection of electrical contacts at wire-material junctions. The promotion 

of electrical contacts can be achieved physically (insert the wire in a drilled hole, tying the wire, etc.),

by the aid of conductive adhesives (glues, tapes, etc.), and/or by interposing an additional conductive

material which can be better connected to the wire. On the other hand, the protection/isolation of

junctions from the electrolyte is generally addressed by coating/sealing with non-corroding resin-like 

adhesives. 

(vi) Different configurations of bioelectrochemical cell can be used. Fig. 1 describes two typical

set-ups enabling to work at laboratory scale. The single-chamber configuration ( Fig. 1 A) consists of

a unique cell/chamber containing the working electrodes together with the counter and reference 

electrodes immersed in the same electrolyte. In the two-chamber configuration ( Fig. 1 B), the

working and reference electrodes are physically separated from the counter electrode by using two 

different compartments (the so-called main and auxiliary chambers, respectively) that are ionically 

interconnected through a suitable polymeric membrane. This last configuration is preferred when the 

electrochemical processes occurring at the counter electrode can interfere in the characterization of 

the working electrodes. The cells are usually isolated to keep deoxygenated conditions by hermetic 

sealing. 

Both configurations allow to have all the working electrodes under the same conditions. 

Physicochemical parameters, such as temperature, pH, solar radiation, presence of gases, concentration 

of electron donors and salts would be the same, so the bacterial culture inoculum, and its initial

metabolic activity, will be the same for all working electrodes. The differences observed in the

responses of each of the working electrodes will only be the consequence of the interaction electrode

material/bacteria. In this way, possible external factors that may lead to erroneous interpretations are 

minimized. 

(vii) The bacterial growth medium must include the following compounds: salts to assure bacterial 

viability and to maintain osmotic balance. Furthermore, such salts include pH buffering species. 

Vitamins and minerals, required in small amounts and necessary for metabolic reactions. Finally, 

oxidizing and reducing species are necessary. The reducing specie is the carbon source that e

microorganisms oxidize. In this particular case, no soluble electron acceptor was added, since the 

electrode performed this role. This medium must be deoxygenated by flushing N 2 or Ar, and

alternatively, N 2 :CO 2 in case of using bicarbonate buffer. It is also recommended to keep the medium

in continuous agitation with a magnetic stirrer. In this sense, a laminar agitation allows a faster

biofilm formation while a turbulent agitation may increase the homogeneity of the medium. 

(viii) Measuring equipment, involving various single multimeters or a multichannel multimeter 

to register the individual currents produced by each of the working electrodes. Some multichannel 

measuring devices cannot record electrical current signals, and only measuring potential differences is 

available. In this case, resistors of a well-known value and negligible compared to the whole internal

resistance of the system are required, in order to be the measured value for the potential difference

corresponding to an electrical current value equal to the real value in absence of that resistor, the

so-called shunt resistor. The resistor was placed in series on each working electrode, and potential
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Fig. 2. Cyclic voltammogram at 10 mV/s of a graphite electrode after promoted biofilm growth in fresh water medium. 
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rop was measured in the shunt resistor. The value of the current produced by each of the working

lectrodes was calculated using Ohm’s Law. 

ethod validation 

To validate the method, two different measurements were proposed. On the one hand, the

revention of wiring corrosion was validated by using abiotic electrochemical measurements, e.g.

yclic voltammetry. Under these conditions, the absence of microbial electrochemical processes

nabled to better discern corrosion-derived currents. On the other hand, the success of using

 multielectrode analysis together with a single potentiostat was validated by means of a

hronoamperometric experiment in presence of microbial electrochemical processes. 

- Strategies for avoiding corrosion in wiring: a CV diagnosis 

The corrosion phenomena in the working electrodes is an important phenomenon since a bad

iring would be reporting artefacts, that could be erroneously attributed to the electroactive bacteria

ctivity. This confusion could occur, for example, since the cyclic voltammetry (CV) of a model

lectroactive bacterium like Geobacter sulfurreducens ( Fig. 2 ) [9] , presents oxidation and reduction

eaks in a potential range very close to those shown occurring with the copper wire CV ( Fig. 3 A).

herefore, it is important to consider the nature of both the wire and the working electrode material,

or deciding how the attachment is made. In this sense, the corrosion of wires and/or wire-material

unctions can be easily evidenced by an abiotic voltammetric characterization of the wired electrode

aterials. 

In this context, we validated some strategies to prevent the corrosion of wires and wire-

aterial junctions involving both porous and nonporous materials by using abiotic CV as diagnosis

ethodology. The CV experiments were carried out in a conventional three-electrodes cell at 10 mV/s

n a potential range between -0.6 V and 0.6 V (vs. Ag/AgCl/Cl −(sat.)). A HANNA HI-5311 glass body

g/AgCl/Cl −(sat.) electrode with ceramic junction was used as reference electrode, whereas a 2 × 3 cm

i/Pt mesh, attached to a copper wire protected by heat shrink tubing, acted as a counter electrode.

ll the electrodes were immersed in phosphate buffer 100 mM deoxygenated with N 2 . 

ires and connections 

To construct the working electrodes, gold and copper were chosen as wire material for their

ifferent corrosion susceptibility, while carbonaceous materials were used as electrode materials due

o their suitable response in microbial electrochemical systems [8] . We validated the material-wire

onnection for each electrode according to their voltammetric response ( Fig. 3 ). 
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Fig. 3. . A) Left: Wires used for working electrode connections: (a.1), copper wire, (a.2) copper wire coated with carbon glue 

and (a. 3) gold wire. Right: cyclic voltammograms corresponding to left configurations; scan rate = 10 mV s -1 ; 100 mM 

buffer phosphate. B) Left: Isostatic graphite connected to copper wire and (b.1) sealed with epoxy resin or (b.2) glued with 

adhesive copper tape and insulated with epoxy resin. Right: cyclic voltammograms corresponding to left configurations; scan 

rate = 10 mV s -1 ; 100 mM buffer phosphate. C) Left: Porous graphite connected to (c.1) gold wire, (c.2) to copper wire through 

isolation with carbon glue and epoxy resin, or (c.3) to copper wire through isostatic graphite, carbon glue and epoxy resin. 

Right: cyclic voltammograms corresponding to left configurations; scan rate = 10 mV s -1 ; 100 mM buffer phosphate. 
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A) Wires. The oxidation and reduction processes of the wire material were studied. In the case of

old wire ( Fig. 3 A-a.3), the CV did not show any peak in the selected potential window demonstrating

he absence of oxidation-reduction processes in the potential window explored. In contrast, copper

ire showed oxidation-reduction peaks ( Fig. 3 A-a.1), which could be mistaken as signals provided

y electroactive microorganisms. Therefore, this type of wire cannot be used directly with porous

arbonaceous materials. To solve this problem, the copper wire should be coated and effectively

solated from the electrolyte with a conductive adhesive, such as PELCOR® Conductive Carbon Glue,

voiding the oxide-reduction processes ( Fig. 3 A-a.2). 

Wire-material connections: In most practical cases the wires are susceptible of corrosion, so

he proposed general strategy should be to isolate wires (are exposed at wire-material junctions)

rom the electrolyte but keeping intact electrical contact. Hence, a wire-material contact must be

roperly established, physically or assisted by a conductive adhesive, and eventually protected from

he electrolyte. The protection is recommended to be extended also to the conductive adhesive in

ase it might undergo any kind of electrochemical process (interference). However, the type of wire-

orking electrode connection will depend on the porous or non-porous nature of the carbonaceous

aterial. 

B) Connecting wires with non-porous carbonaceous materials. The material used for validation was

sostatic Graphite grade 2114-45 provided by Mersen. Due to the non-porous nature of the material,

he isolation of connections can be addressed at any point of the electrode surface, independently

f whether the junction was on the outer surface or just inserted inside the material. Both two

ossibilities were tested ( Fig. 3 B). 

b.1) A 1 mm diameter orifice was drilled in one of the sides of the isostatic graphite plate and

a copper wire was inserted for a proper physical contact. Then, the connection was isolated and

reinforced on the outer surface of the material in contact with the electrolyte by using Araldit®

epoxy. 

b.2) Another possibility was to glue the copper wire to the surface of the isostatic graphite using

conductive copper adhesive tape, finally this junction will be covered and isolated with Araldit®

epoxy. The response of copper wire-isostatic graphite connections was studied. Our studies revealed

that both connections ( Fig. 3 B) were valid for the construction of working electrodes. Indeed, in

spite of the resistance and capacity of the electrode, no oxidation-reduction peaks were observed in

the range of selected potentials, so the electrochemical response is truly having a biological origin

in the interaction between electroactive microorganisms and electrode surface. 

C) Connecting wires with porous carbonaceous materials. The material used for validation was

raphite grade 6506, provided by Mersen. The porous nature of the material enables the electrolyte

o permeate through, so the isolation of connections can be exclusively faced just on the junctions

 Fig. 3 C): 

c.1) In the case of using non-corroding wires, e.g. gold, a simple physical junction could be made

to safely avoid any corrosion interference. In contrast, if corroding materials are used as wires, e.g.

copper or nickel, the following connections are suggested: 

c.2) the wire should be connected with PELCOR® Conductive Carbon Glue, so the copper wire would

be directly attached to the porous carbonaceous material while isolated from the electrolyte. This

junction should be coated with Araldit® epoxy to seal and strengthen the connection. 

c.3) An alternative actin would b is to stick the porous carbonaceous material to a current collector

(for example, isostatic graphite) with PELCOR® Conductive Carbon Glue, and coat the junction

with Araldit® epoxy to isolate and reinforce the connection. Interestingly, the use of appropriated

connections revealed the absence of oxidation-reduction peaks and the CV response was pure

capacitive ( Fig. 3 C). 

- Method for performing a multielectrode analysis using a single potentiostat 

Chronoamperometry is one of the most important characterization techniques of microbial

lectrochemical systems, so it was used to validate our simultaneous multielectrode analysis. Three
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Fig. 4. (A) Current intensity and polarization potential associated to the 3 working electrodes of the MEC including the summation of all currents. (B) Comparison of the total current 

recorded by both the multimeter and the potentiostat. 
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a  
ifferent porous carbonaceous materials were used as working electrodes (WE) in a single chamber

ell. These materials differed in electrical conductivity (WE1, WE2 and WE3, from lowest to highest

lectrical conductivity). The wiring was done as described in section one ( Fig. 3 C-c.2). The counter

lectrode and reference electrode were identical to those described in section one. The cell had

 volume of 500 mL, the electrolyte used was Fresh Water Medium (FWM). FWM contained the

ollowing mineral salts (per liter): 2.2 g of Na 2 HPO 4 , 1.18 g of NaH 2 PO 4 , 0.64 g of NH 4 Cl, 0.26 g of KCl

nd 0.024 g of C 6 H 5 FeO 7 (ferric citrate). Moreover, it includes a mix of vitamins and trace minerals

10] . Acetate (20 mM) was supplied as the sole carbon and electron donor. Anaerobic conditions were

chieved by flushing the culture media with N 2 to remove oxygen and a phosphate buffer was used

o keep a pH of 7. This medium was inoculated with 20 mL of Geobacter sulfurreducens pure culture

ith an OD 600 = 0.6. 

Each working electrode was polarized to + 0.2 V ( vs. Ag/AgCl(sat.)) with a Nanoelectra NEV-4

otentiostat, which allows to monitor the overall electrical current passing through the system. The

eal potential difference WE-RE and individual current at each working electrode were continuously

ecorded with a Keithley 2700 multichannel multimeter. The basic model of this family of multimeters

as only 2 channels to measure current and 20 channels for recording potential differences.

lternatively, a resistor of known value, shunt resistor can be incorporated to potential-measuring

hannels for registering the potential drop across it the it is related to the electrical current through

hm’s Law. This resistor is usually called shunt-resistor in electronic field. 

Nevertheless, to follow the same measurement strategy (for a better comparability), three resistors

ere used to measure the current of the three working electrodes. The resistor values should be

elected according to the expected currents and the accuracy of the measuring equipment. The

esistors were connected in series between each working electrode and in parallel with respect to the

ultimeter. In addition, another channel of the multimeter was connected in parallel between the

orking and reference electrodes, to know the real polarization potential for each working electrode.

hus, although the resistance of each material that is acting as working electrode is different, it can be

hecked if electrodes are polarized at the right potential. Finally, to verify that the current produced

y the system is being correctly monitored, one of the multimeter current channels was connected, in

eries, to the counter electrode. The sum of the current generated by each working electrode should

e equal to both the current registered at the counter electrode and the current registered by the

otentiostat. 

Fig. 4 A shows the calculated values of current produced by each of the three working electrodes,

he bigger electrical current value corresponds to the electrode material with lower electrical

esistance. These values were calculated through the instantaneous potential difference measured in

ach working electrode and the value of the resistor used in the external circuit (1 K �). The total sum

f the currents produced by each working electrode measured by the aid of the Keithley multimeter

blue line in Fig. 4 A) was the same as the one recorded by the NEV-4 potentiostat (see fitting in

ig. 4 B). Furthermore, the real potential of each working electrode remained constant around 0.23

 over time for the different electrodes ( Fig. 4 A). The difference of 30 mV between the set and

easured potentials is assigned to the inevitable circuit and connections resistances, but this small

alue supports that the electrochemical characterization based on the proposed method has been

arried out successfully. 
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