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Abstract

In this paper we study a class of multishot network codes given by
families of nested subspaces (flags) of a vector space Fn

q , being q a prime
power and Fq the finite field of q elements. In particular, we focus on flag
codes having maximum minimum distance (optimum distance flag codes).
We explore the existence of these codes from spreads, based on the good
properties of the latter ones. For n = 2k, we show that optimum distance
full flag codes with the largest size are exactly those that can be constructed
from a planar spread. We give a precise construction of them as well as a
decoding algorithm.

Keywords: Network coding, subspace codes, projective space, spreads, flag
codes.

1 Introduction

The concept of Network Coding, first introduced in [1], describes a method for
attaining a maximum information flow within a network that is an acyclic directed
graph with possibly several sources and sinks. It was proved in [1] that the
information rate of a network can be improved by using coding at the nodes of
the network, instead of simply routing the received inputs. An algebraic approach
to coding in non-coherent networks, called random network coding, was given by
Koetter and Kschischang in [5]. Given a finite field Fq, the authors defined
the subspace channel as a discrete memoryless channel with input and output
alphabets given by the collection of all possible vector subspaces of Fn

q , that is,
Pq(n). The source node transmits an input subspace vector, which is processed
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in the intermediate nodes and, in the absence of errors, the sink nodes receive
the same subspace. In order to correct possible errors or erasures that may
happen during the transmission, one can limit the choice of input subspaces to
a particular subset of the projective space called subspace code [5]. The study of
subspace codes has led to many papers in recent years (see for instance [11] and
the references therein). Most of these articles focus on constant dimension codes,
that is, subspace codes in which all subspaces have the same dimension. An
important family of constant dimension codes is the one of spread codes, which
have maximal minimum distance and achieve the largest possible size [7, 8].

When we use the subspace channel more than once, we talk about multishot
subspace codes. In this kind of codes, introduced in [9], the subspace channel is
used many times, in order to transmit sequences of subspaces. As it was explained
in that paper, multishot subspace codes appear as an interesting alternative to
subspace codes (one-shot subspace codes) when the field size q or the packet size
n can not be increased. Moreover, even if these parameters are acceptable for
our communication channel, multishot subspace codes can be useful for solving
complexity problems (one-shot codes in Pq(nr) can be considerably more com-
plicated than r-shot codes over Pq(n) [9]). As a particular case, here we consider
multishot subspace codes given by sequences of nested subspaces, that is, flag
codes. In the network coding setting, flag codes were first introduced in [6], as a
generalization of constant dimension codes, and a model of network channel for
flags was given.

In this paper we characterize flag codes having maximum distance in terms of
the constant dimension codes used at each shot. We call them optimum distance
flag codes. Motivated by the good properties of spreads as constant dimension
codes, we focus on flag codes than can be constructed from some spread. More-
over, for n = 2k we prove that the optimum distance full flag codes with the
best possible size are exactly the ones having a planar spread as the constant
dimension code used at the k-th shot. We give a precise construction of such flag
codes together with a decoding algorithm on the erasure channel.

It was suggested in [10] that the existence of dependencies among the trans-
mitted subspaces in each sequence may improve the error-correction capability
of a multishot code. We prove that this is true for the flag codes given by our
construction.

The structure of the paper is as follows. In Section 2 we give some basic back-
ground on constant dimension codes (mainly equidistant codes, partial spreads
and spreads) together with some notions on multishot codes. Section 3 is devoted
to the study of flag codes focusing on their distance properties. We provide a
bound for optimum distance flag codes and we give a characterization of them.
In Section 4 we explore how to get optimum distance flag codes with the largest
possible size. We discuss if it is possible to get optimum distance flag codes from
k-spreads (for some divisor k of n). We conclude that for full flag codes this is
only possible starting from planar spreads. Next we give a concrete construction
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of an optimum distance full flag code with the largest size in F2k
q and we develop

a decoding process for our code on the erasure channel. We finish Section 4 with
some constructions of general type flag codes closely related to our construction
for full flag codes.

2 Preliminaries

Let q be a prime power and Fq the field with q elements. Fix an integer n > 1 and
consider Pq(n) the set of all vector subspaces of Fn

q , i.e., the projective geometry
of Fn

q . The natural measure of distance in Pq(n) is given by

dS(U ,V) = dim(U + V)− dim(U ∩ V)

for all U ,V ∈ Pq(n). It is called the subspace distance between U and V.
A subspace code is defined to be a subset C ⊆ Pq(n) with at least two elements.

In this context, the minimum distance of a subspace code C is the value

dS(C) = min{dS(U ,V) | U ,V ∈ C, U 6= V}.

If all the elements in C have the same dimension, say k, with 1 6 k < n, the code
C is called a constant dimension code. In this case C is a code in the Grassmannian
Gq(k, n), that is, the set of all k-dimensional vector subspaces of Fn

q . The reader
is referred to [5] for the basic background on subspace codes.

As in classical Coding Theory, one of the main problems when working with
subspace codes is the search for optimal codes with the largest size given a min-
imum distance or optimal codes with the largest minimum distance given a size.
Let us recall some important concepts related with this problem which will be
used in the sequel.

2.1 Equidistant codes, partial spreads and spreads

A constant dimension code C ⊂ Gq(k, n) is equidistant if the distance between
any two distinct codewords is equal to a given value. Hence, it is satisfied that
dS(C) = dS(U ,V) for all U ,V ∈ C with U 6= V. In particular, the intersection
between any two different codewords of C has a fixed dimension c with dS(C) =
2(k − c). In this case, we say that C is an equidistant c-intersecting constant
dimension code. Note that the condition n > 2k− c is necessary for the existence
of that codes. Equidistant subspace codes in the Grassmannian were introduced
for the first time in [2]. In this paper important examples of families of equidistant
codes are described. In [4] the authors give an almost complete classification of
such codes in ground fields with large cardinality.

A code C ⊆ Gq(k, n) with dS(C) = 2k is called a partial spread code. In
particular, a partial spread code is an equidistant 0-intersecting constant dimen-
sion code (n > 2k). A systematic construction of partial spreads with efficient
decoding algorithms can be found in [3].
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Note that a partial spread code attains the maximum subspace distance.
Concerning the size of such codes, in [3] we can find the following result: if
C ⊆ Gq(k, n) is a partial spread then

|C| 6

⌊

qn − 1

qk − 1

⌋

. (1)

When k divides n this upper bound is always attained by codes that are called
spread codes (or k-spread codes). It follows that k-spread codes are optimal codes
with minimum distance 2k. See [7] and references inside for more details on
spreads.

2.2 Multishot Codes

The codes described in the previous section can be considered as examples of one-
shot subspace codes, since they use the subspace channel just once. In contrast,
the subspace channel can be used many times giving rise to the so-called multishot
subspace codes introduced in [9]. This kind of codes appears as an alternative to
one-shot subspace coding, specially when it is not possible to modify neither
the field size q nor the packet size n. Multishot subspace coding introduces a
new interesting parameter in order to find codes with good rates: the number of
channel uses. Moreover, as pointed out in [10], we can obtain codes with better
error-correction capabilities by spreading redundancy across multiple shots.

A multishot subspace code of length r (also called an r-shot subspace code)
over Pq(n), is a non-empty subset of Pq(n)

r, that is, the r-th Cartesian power
of the projective space. The extended subspace distance between two elements
U = (U1, . . . ,Ur) and V = (V1, . . . ,Vr) of Pq(n)

r, is defined by

dS(U ,V) =
r

∑

i=1

dS(Ui,Vi). (2)

In [9], the subspace dimension at each shot is unfixed and no relationship with
previous shots is imposed. However, creating dependencies among the transmit-
ted codewords of different shots can improve the error-correction capabilities (see
[10]). In this paper we explore the use of multishot constant dimension codes
given by nested subspaces (flags), that is, at each shot the dimension of the trans-
mitted subspace is fixed and it must contain the subspace sent at the previous
shot. Let us precise this idea in the following section.

3 On flag codes

A flag of type (t1, . . . , tr), with 0 < t1 < · · · < tr < n, on the vector space Fn
q is

an element F = (F1, . . . ,Fr) of Gq(t1, n)× · · · × Gq(tr, n) ⊆ Pq(n)
r such that
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0 ( F1 ( · · · ( Fr ( Fn
q

and dim(Fi) = ti, for all i = 1, . . . , r. In case the type vector is (1, 2, . . . , n − 1)
we say that F is a full flag. Given a flag F = (F1, . . . ,Fr) of type (t1, . . . , tr),
we say that Fi is its i-th subspace. The space of flags of type (t1, . . . , tr) on Fn

q is
denoted by Fq((t1, . . . , tr), n). In this context we can give the following definition:

Definition 3.1. A flag code of type (t1, . . . , tr) on the vector space Fn
q is a subset

C ⊆ Fq((t1, . . . , tr), n) with |C| > 2.

As a subset of Pq(n)
r, the space Fq((t1, . . . , tr), n) can be naturally endowed

with the extended subspace distance given in (2). We will denote it by df in the
flag codes setting.

Definition 3.2. Given F = (F1, . . . ,Fr) and F ′ = (F ′
1, . . . ,F

′
r) two flags in

Fq((t1, . . . , tr), n), the flag distance between F and F ′ is

df(F ,F ′) =

r
∑

i=1

dS(Fi,F
′
i),

where dS denotes the subspace distance. The minimum distance of a flag code C
of type (t1, . . . , tr) is given by

df (C) = min{df(F ,F ′) | F ,F ′ ∈ C, F 6= F ′}.

Remark 3.3. Observe that a flag code of type (t1, . . . , tr) is, in particular, a
multishot constant dimension code of length r. Besides, a flag of type (t1) on
Fn
q is just a vector space of dimension t1 of Fn

q and the flag space Fq((t1), n)
coincides with the Grassmannian Gq(t1, n). In this sense, flag codes generalize
subspace codes and the flag distance is also a generalization of the subspace
distance defined over the Grassmannian.

Just as constant dimension codes in Gq(k, n) have minimum distance upper-
bounded by the value min {2k, 2(n− k)}, we can also give an upper bound for
flag codes of type (t1, . . . , tr). To do so, take into account that given a pair of
flags F = (F1, . . . ,Fr) and F ′ = (F ′

1, . . . ,F
′
r), both of type (t1, . . . , tr), for each

i ∈ {1, . . . , r}, it holds that

dS(Fi,F
′
i) 6 2ti, if 2ti 6 n (3)

and

dS(Fi,F
′
i) 6 2(n− ti), if 2ti > n. (4)

Next result follows straightforwardly.
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Lemma 3.4. Given a flag code C ot type (t1, . . . , tr) on Fn
q , we have that

df(C) 6 2





∑

ti6⌊n

2
⌋

ti +
∑

ti>⌊n

2
⌋

(n− ti)



 . (5)

In particular, when C is a full flag code, (5) becomes

df(C) 6



















n2

2
, for n even,

n2 − 1

2
, for n odd.

3.1 Flag codes with maximum distance

We are interested in the family of flag codes on Fn
q that attain the bound given

in (5).

Definition 3.5. We say that a flag code C ot type (t1, . . . , tr) is an optimum
distance flag code if it attains the maximum possible distance for flag codes of
type (t1, . . . , tr) given by (5).

To deepen in the study of optimum distance flag codes we consider some
special constant dimension codes that can be associated to a given flag code in a
natural way.

Definition 3.6. Consider a flag code C of type (t1, . . . , tr) and take an index
i ∈ {1, .., r}. We call the i-projected code of C to the subspace code Ci given by
the set of all the i-th subspaces of flags in C. More precisely,

Ci = {V ∈ Gq(ti, n) | V = Fi for some F = (F1, . . . ,Fr) ∈ C} .

For each i ∈ {1, . . . , r}, we have that Ci is a constant dimension code in
Gq(ti, n) of cardinality |Ci| 6 |C|. Notice that it is satisfied that dS(Ci) > 0 and,
dS(Ci) = 0 if and only if |Ci| = 1.

Our aim is to determine if a given flag code is an optimum distance flag
code in terms of properties of its projected codes. In particular, an optimum
distance flag code of type (t1) is a constant dimension code in the Grassmannian
Gq(t1, n) with maximum subspace distance. So, optimum distance flag codes also
generalize maximum distance constant dimension codes.

Proposition 3.7. Let C be an optimum distance flag code of type (t1, . . . , tr) on
Fn
q . Then all its projected codes attain their maximum possible subspace distance,

that is, dS(Ci) = min {2ti, 2(n− ti)} .

6



Flag Codes from Planar Spreads in Network Coding

Proof. Assume that C is an optimum distance flag code such that the i-projected
code Ci has subspace distance dS(Ci) < min {2ti, 2(n− ti)} for some index 1 6

i 6 r. Then, there exist different flags F ,F ′ ∈ C such that the value dS(Fi,F
′
i)

does not attain the bounds (3) or (4) and, consequently, the bound given in (5)
cannot be attained.

Remark 3.8. The previous result states which kind of constant dimension codes
can play an important role to provide families of optimum distance flag codes
from its projected codes: partial spreads of dimension up to ⌊n

2
⌋ or equidistant

codes with minimum possible subspace intersection for higher dimensions. In
other words, if C is an optimum distance flag code of type (t1, . . . , tr) and Ci is
its i-projected code, then Ci must be a ci-intersecting constant dimension code of
dimension ti, where ci = max {0, 2ti − n}.

Notice that, in general, the converse of Proposition 3.7 is not true: a flag code
having maximum distance constant dimension codes as projected codes does not
have to be necessarily an optimum distance flag code. The following example
reflects this situation.

Example 3.9. Consider the standard basis {e1, ..., e5} of the vector space F5
q.

Let C be the flag code of type (1, 3) on F5
q consisting of the flags:

F1 = (〈e1〉 , 〈e1, e2, e3〉),
F2 = (〈e4〉 , 〈e1, e4, e5〉),
F3 = (〈e1〉 , 〈e1, e2 + e4, e3 + e5〉).

This flag code has two projected codes with maximum subspace distance: a
partial spread C1 ∈ Gq(1, 5) and a 1-intersecting code C2 ⊂ Gq(3, 5). Nevertheless,
the distance of C is df (C) = df (F

1,F3) = 4 while, by means of (5), the distance
of any optimum distance flag code of type (1, 3) on F5

q has to be equal to 6.

Observe that in Example 3.9 the minimum distance of the flag code C is
attained between two flags with the same first subspace. Hence, despite of having
a flag code C with maximum distance projected codes, if two flags in C share a
subspace, the code C cannot have optimum distance. At this point, we introduce
a family of flag codes in which different flags have no common subspaces.

Definition 3.10. Given a flag code C ot type (t1, . . . , tr), we say that C is a
disjoint flag code if |C1| = · · · = |Cr| = |C|, where C1, ..., Cr are the projected
subspace codes of C.

Next result gives a characterization of optimum distance flag codes.

Theorem 3.11. Let C be a flag code of type (t1, . . . , tr). The following statements
are equivalent:
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(i) The code C is an optimum distance flag code.

(ii) The code C is disjoint and every projected code Ci attains the maximum
possible subspace distance.

Proof. (i) ⇒ (ii). Let C be an optimum distance flag code. By Proposition
3.7, every projected code of C attains the maximum possible subspace distance.
Assume that C is not disjoint. Then, there exists some index j ∈ {1, . . . , r} with
|Cj | < |C| and at least two different flags F ,F ′ ∈ C such that Fj = F ′

j. Thus

df(C) 6 df(F ,F ′) =
∑

i 6=j

dS(Fi,F
′
i).

By means of the bounds provided in (3) and (4), we have that df(C) cannot be
the maximum distance and then, the flag code C cannot be an optimum distance
flag code.

(ii) ⇒ (i). Assume that (ii) is true. Since C is disjoint, given any pair of
different flags F and F ′ in C, for every i = 1, . . . , r, the subspaces Fi and F ′

i

are different and dS(Fi,F
′
i) = dS(Ci) is the maximum possible distance between

ti-dimensional subspaces. Hence, df(C) attains the upper bound given in (5) and
C is an optimum distance flag code.

Taking into account this result, in the following section we propose a full flag
code construction that provides a family of optimum distance flag codes with the
largest possible size.

4 Optimum distance flag codes from spreads

In Section 3 we have proved that the projected codes of an optimum distance flag
code C of type (t1, ..., tr) on Fn

q have to be maximum distance constant dimension
codes. In particular, projected codes of dimension up to ⌊n

2
⌋ must be partial

spreads. Moreover, if there is any dimension ti that divides n, then ti 6 ⌊n
2
⌋, and

we have that Ci has to be a partial spread.
Recall that spread codes are codes with optimal cardinality for maximal error

correction capability, that is, optimal partial spreads. Furthermore, ti-spreads of
Fn
q always exist whenever ti is a divisor of n (see [7],[8]).

In the search of families of optimum distance flag codes with the largest pos-
sible size, it is quite natural to look for optimum distance flag codes having a
spread as i-projected code for ti a divisor of n. We begin this section focusing on
this question for optimum distance full flag codes.

By Theorem 3.11, any optimum distance flag code has to be disjoint. Then,
by cardinality, we can have one spread code at most among its projected codes.
In the following result we determine which dimensions i ∈ {1, . . . , n − 1} could
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be admissible to get C an optimum distance full flag code such that Ci is a spread
code.

Proposition 4.1. Let C be an optimum distance full flag code on Fn
q such that

n = ks > 2. Assume that its k-projected code Ck is a k-spread. Then, if n 6= 3,
we have that s = 2.

Proof. If n = 2, the result follows straightforwardly since a full flag code on F2
q

is just a subspace code in Gq(1, 2).
Now, assume that n = ks > 4. Since k < n, it follows that s > 1. Arguing by

contradiction, suppose s > 2. Let us see that, in this case, k+1 6 ⌊n
2
⌋. Note that

this is equivalent to show that 2(k+ 1) = 2k+ 2 6 ks = n, that is, (s− 2)k > 2.
In case k = 1, we have (s− 2)k = s− 2 = n− 2 > 2, since n > 4. If k > 2, since
s− 2 > 1 we also obtain (s− 2)k > 2.

Now, as C is an optimum distance full flag code, by means of Theorem 3.11, its
(k+1)-projected code must be a partial spread of Fn

q with cardinal |Ck+1| = |Ck| =
qn−1
qk−1

. This is a contradiction, since the size of any partial spread of dimension

k + 1 is upper bounded by ⌊ qn−1
qk+1−1

⌋ < qn−1
qk−1

by (1).

As a consequence of Proposition 4.1, for n 6= 3, if there exist optimum distance
full flag codes on Fn

q with a k-spread as a k-projected code, the dimension n must
be equal to 2k. In the following subsection we give the precise construction of an
optimum distance full flag code C on F2k

q such that Ck is a k-spread.

Remark 4.2. Notice that for n = 3 the only admissible situation for conditions
of Proposition 4.1 corresponds to k = 1, since k < n. In this case, full flags consist
of nested lines and planes. This is a particular case of a much more general study
that we will address in a forthcoming paper (see Section 5).

4.1 Our Construction

Throughout this section, we will assume that n = 2k and k > 2. Let S be a
planar spread of F2k

q , that is, a spread S ⊆ Gq(k, 2k). In particular, we have
that S has cardinality |S| = qk + 1 and we can write S = {S1, . . . ,Sqk+1}. The
subspaces Si satisfy

Si ∩ Sj = {0} and Si + Sj = F2k
q , (6)

whenever i 6= j.
Now, for every i ∈ {1, ..., qk + 1}, we consider Si a generator matrix of the k

dimensional subspace Si. That means that Si is a full-rank (k× 2k)-matrix such

that Si = rowsp(Si). Fixed an index j 6 k, we will denote by S
(j)
i the submatrix

of Si given by the first j rows of Si.
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Since C is a planar spread, any matrix of the form

(

Si1

Si2

)

is a 2k×2k full rank

matrix for i1 6= i2. In particular, if we denote

Wi =

(

Si

Si+1

)

for i = 1, . . . , qk and Wqk+1 =

(

Sqk+1

S1

)

, (7)

we have that all the matrices Wi are 2k × 2k full rank matrices. Moreover,
W

(k)
i = Si for any i = 1, ..., qk + 1. We will denote by

W
(j)
i = rowsp(W

(j)
i )

the subspace of dimension j generated by the first j rows of Wi. Notice that,
given i ∈ {1, ..., qk + 1} and 1 6 j1 < j2 6 2k, it holds that W

(j1)
i ( W

(j2)
i . As a

consequence, given a matrix Wi as above, we can define the full flag associated
to Wi as

FWi
= (W

(1)
i , . . . ,W

(2k−1)
i ). (8)

Finally, we define the full flag code associated to the matrices {Wi}
qk+1
i=1 as

C = {FWi
| 1 6 i 6 qk + 1}. (9)

It follows that the j-projected code of C is

Cj = {W
(j)
i | 1 6 i 6 qk + 1}. (10)

Our aim is to prove that the code C defined in (9) is an optimum distance
full flag code such that Ck = S (see Theorem 4.4). To do this, we proceed in
two steps: first we show that Cj is a partial spread, for each 1 6 j 6 k and,
secondly, we will show that Cj is an equidistant 2(j − k)-intersecting code, for
each k < j < 2k.

Proposition 4.3. Let S be a k-spread of F2k
q . Using the previous notation, for

all 1 6 j 6 2k − 1, the set

Cj =
{

W
(j)
i | i = 1, . . . , qk + 1

}

,

is a constant dimension code of Gq(j, 2k) with cardinality |Cj| = |S|. Moreover,

(1) Cj is a partial spread, for 1 6 j 6 k, and

(2) Cj is equidistant 2(j − k)-intersecting, for k < j 6 2k − 1. So, its distance
is 2(2k − j), that is the maximum possible distance between a pair of j-
dimensional subspaces in F2k

q .
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Proof. Since the matrices {Wi}
qk+1
i=1 defined in (7) have full rank, the first j rows

of Wi are linearly independent for all 1 6 j 6 2k − 1. Hence, W
(j)
i is a j-

dimensional subspace of F2k
q and Cj is a constant dimension code of Gq(j, 2k), for

every 1 6 j 6 2k − 1.
Let us consider two different subspaces W

(j)
i and W

(j)
l in Cj , with i, l ∈

{1, . . . , qk + 1}, i 6= l. For 1 6 j 6 k, it holds that

W
(j)
i ∩W

(j)
l = rowsp(S

(j)
i ) ∩ rowsp(S

(j)
l ) ⊆ Si ∩ Sl = {0} .

As a consequence, we have dS(Cj) = 2j and Cj is a partial spread satisfying

|Cj | = |S|. Now, for k < j 6 2k − 1, the sum subspace of W
(j)
i and W

(j)
l has

dimension

dim
(

W
(j)
i +W

(j)
l

)

= rk









Si

S
(j−k)
i+1

Sl

S
(j−k)
l+1









= rk

(

Si

Sl

)

= 2k.

Besides, we have that

dim
(

W
(j)
i +W

(j)
l

)

= 2j − dim
(

W
(j)
i ∩W

(j)
l

)

.

As a consequence, one has that dim
(

W
(j)
i ∩W

(j)
l

)

= 2(j−k). We conclude that

Cj is an equidistant 2(j − k)-intersecting code with subspace distance dS(Cj) =
2(j − 2(j − k)) = 2(2k − j) and size |Cj | = |S|.

From the previous proposition we can directly conclude the main result in
this section:

Theorem 4.4. Let S be a k-spread of F2k
q with generator matrices {Si}

qk+1
i=1 . Con-

sider the matrices {Wi}
qk+1
i=1 defined in (7). Then, the set of full flags associated

to these matrices, i.e.,

C = {FWi
| i = 1, . . . , qk + 1},

is an optimum distance full flag code with distance 2k2 and size |C| = |S| = qk+1.

Proof. By Proposition 4.3, we have that the projected subspaces of C satisfy the
following:

(1) Cj is a partial spread of Gq(j, 2k), for j = 1, . . . , k − 1,

(2) Ck = S,
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(3) Cj is an equidistant 2(j − k)-intersecting code of Gq(j, 2k), for j = k +
1, . . . , 2k − 1.

(4) |C1| = · · · = |Ck| = · · · = |C2k−1| = |C|.

Therefore, C is a disjoint flag code such that every projected code attains the
maximum possible subspace distance. By means of Proposition 3.11, we conclude
that C is an optimum distance flag code. Since C is a full flag code, by Lemma
3.4, it follows that df(C) = 2k2.

Once we have constructed the optimum distance full flag code given in Theo-
rem 4.4, we wonder if there exist other optimum distance full flag codes on F2k

q ,
not necessarily having a spread as k-projected code, with cardinality higher than
qk + 1. Next, we show that this cardinality cannot be improved and hence, the
flag code given by our construction has also the maximum possible size among
optimum distance full flag codes on F2k

q .

Theorem 4.5. Let C be an optimum distance full flag code on F2k
q . Then |C| 6

qk + 1. The equality holds if, and only if, the k-projected code of C is a planar
spread of F2k

q .

Proof. Let C be an optimum distance full flag code on F2k
q and consider its k-

projected code Ck ⊂ Gq(k, 2k). By Theorem 3.11, we know that C is a disjoint flag
code and its projected codes have maximum distances. In particular, |C| = |Ck|

and Ck is a partial spread of F2k
q . Hence, |C| = |Ck| 6

q2k−1
qk−1

= qk + 1 and, the
equality holds only if Ck is a spread code.

To present an example of optimum distance full flag code on F2k
q having a k-

spread as a k-projected code, it is enough to choose a family of generator matrices
of a given planar spread. We use the spread constructed in [7].

Example 4.6. Let M denote the companion matrix of a monic, primitive poly-
nomial of degree k and coefficients on Fq. The set S ⊂ Gq(k, 2k), with elements
generated by matrices

Si = [Ik|M
i] , i = 1, . . . , o(M) = qk − 1,

Sqk = [Ik| 0 ] ,
Sqk+1 = [ 0 |Ik] ,

is a planar spread of F2k
q (see [7]). Now, following the construction provided by

Theorem 4.4, from the planar spread S we can obtain an optimum distance full
flag code of cardinality qk + 1.

Remark 4.7. In [6] the authors present several constructions of flag codes as
orbits of group actions. None of that constructions attain the bound given in (5)
and therefore none of them are optimum distance flag codes.

12
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4.2 A decoding process on the erasure channel

We fix C a full flag code from a given planar spread defined as in Theorem 4.4 as
our error correcting flag code and we propose a decoding algorithm on the erasure
channel. In the general setting of error correcting models based on minimum
distance, it is well known that any code with minimum distance d can detect up
to d − 1 errors and can correct, at most, ⌊d−1

2
⌋ of them. In particular, as stated

in Theorem 4.4, our flag code C has flag distance df(C) = 2k2, so it can detect

up to 2k2− 1 errors and correct at most
⌊

2k2−1
2

⌋

= k2− 1 errors. Moreover, if we

consider its projected codes Ci as independent subspace codes, their respective

error-correction capabilities are
⌊

dS(Ci)−1
2

⌋

= dS(Ci)
2

− 1 for i = 1, . . . , 2k − 1.

Now, assume we have sent a flag F = (F1, . . . ,F2k−1) ∈ C and the receiver
has obtained a sequence of subspaces X = (X1, . . . ,X2k−1). We denote the total
error of the communication by

e = df(F ,X ) =
2k−1
∑

i=1

dS(Fi,Xi).

Moreover, the i-th (shot) subspace error will be denoted by ei = dS(Fi,Xi).
As C is an optimum distance flag code, in particular df(C) =

∑2k−1
i=1 dS(Ci) by

Theorem 3.11. Based on this property, in the following result we prove that if
the total error e is correctable by our flag code C, that is, e 6 k2− 1, at least one
of the associated subspace errors must be also correctable. As a consequence, at
least one of the received subspaces could be decoded by minimum distance in the
corresponding projected code.

Proposition 4.8. Assume that e is a correctable total error. Then there exists
at least one index i ∈ {1, . . . , qk + 1} such that the i-th subspace error ei is
correctable.

Proof. Suppose that none of the subspace errors is correctable. That means that
ei >

dS(Ci)
2

− 1 for all i. Hence, we have that ei >
dS(Ci)

2
. By Theorem 3.11, if we

compute the total error, we get

e =

2k−1
∑

i=1

ei >

2k−1
∑

i=1

dS(Ci)

2
=

df(C)

2
= k2 > k2 − 1.

This is a contradiction, since e is correctable.

Notice that Proposition 4.8 still holds true in the more general setting of
multishot codes in which the extended distance of the code is the sum of the
subspace distances of the codes used at each shot. In addition to this property,
the nested structure of our flag code will be useful in the decoding process as we
will see next.

13
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The erasure channel model

Our code C is, in particular, a multishot subspace code [9] and we will use the
subspace channel at most 2k − 1 times. Nevertheless, since we are working with
flags, we use the general idea of the channel model proposed in [6] in order to
take advantage of the nested subspaces we have. As we will see later, this fact
improves the error-correction capability of the code, as it was already suggested
in [10].

The network is modelled as a finite directed acyclic multigraph with a single
source and possibly multiple receivers. The source and the receivers agree in
some set of flags, our code C in this case, and the information is encoded as a flag
in C. As we assume we work in an erasure channel, erasures are allowed during
the transmission process but there are no errors at any step.

Suppose we want to send the full flag F ∈ C, associated to the matrix Ws,
for some s ∈ {1, . . . , qk + 1}. Recall that if Fi is the i-subspace of F , according

to (8), we have that Fi = W
(i)
s = rowsp(W

(i)
s ), for i = 1, . . . , 2k− 1. In principle,

the source sends this full flag F in 2k − 1 shots. Nevertheless, as we will see
in Propositions 4.11 and 4.13, we usually could get F in a significantly fewer
number of shots.

Next we describe the general process of transmission. At the i-th shot:

• Through every outgoing edge, the source sends the i-th row of the generator
matrix of Fi, that is, W

(i)
s .

• Then, every intermediate node constructs random linear combinations of
the vectors that it has received up to this point and sends each of them
through an outgoing edge.

• The receiver obtains many (say ai) random linear combinations of the rows

of W
(i)
s and gets a matrix Zi = YiW

(i)
s , where Yi is a (ai × i)-matrix. The

receiver gathers the matrices Z1, . . . , Zi received until this moment and
defines the subspace

Xi = rowsp







Z1
...
Zi






⊆ Fi. (11)

• Finally, at the last shot, i.e., the (2k − 1)-th shot, the sequence of nested
subspaces X = (X1, . . . ,X2k−1) is received.

Notice that if for an index i ∈ {1, ..., 2k− 1}, the last column of Yj is not null
for all j 6 i, then Xi = Fi. If this happens at any shot, then X = F . Otherwise,
erasures have occurred during the transmission process and X is an stuttering
flag, that is, a sequence of nested subspaces where equalities are allowed (see [6]).
Nevertheless, we always have that Xi ⊆ Fi for all i.

14
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Remark 4.9. Observe that this channel model takes advantage of the nested
structure of flags in order to reduce the number of erasures that occur in the com-
munication process. If we send a flag as a codeword of a multishot code, without
regarding the nested structure of its subspaces, at the i-th shot, the receiver gets
a matrix Zi = YiW

(i)
s and constructs a subspace X̄i = rowsp(Zi). After 2k − 1

shots, the receiver has obtained a sequence of subspaces X̄ = (X̄1, . . . , X̄2k−1). In
that case, by construction, it holds X̄i ⊆ Xi ⊆ Fi and then,

dS(Fi,Xi) = dim(Fi + Xi)− dim(Fi ∩ Xi)
= dim(Fi)− dim(Xi)
6 dim(Fi)− dim(X̄i)
= dS(Fi, X̄i).

Hence, the stuttering flag X is always, at least, as closer to the sent flag as the
sequence of subspaces X̄ , in spite of the fact that the same number of erasures
has occurred at each shot. So, we can say that sending flags, which have a lot
of redundancy in their structure, makes possible to correct some erasures during
the transmission process. Even more, although erasures occur at some shot, in
some cases, the channel itself can correct them and the receiver can obtain the
sent flag, as in the following example.

Example 4.10. Suppose we send the flag F = (〈e1〉, 〈e1, e2〉, 〈e1, e2, e3〉) of type
(1, 2, 3) on F4

q , where {e1, e2, e3, e4} represents the standard basis of F4
q . Suppose

that during the communication process, some erasures have occurred and the
receiver gets matrices

Z1 =
(

1 0 0 0
)

, Z2 =

(

0 0 0 0
0 1 0 0

)

, and Z3 =





1 0 0 0
0 0 0 0
0 0 1 0



 .

Nevertheless, the received sequence X coincides with the sent flag F .

A decoding algorithm

Suppose that we have sent a flag F = (F1, . . . ,F2k−1) belonging to our code
C and, through an erasure channel, the receiver has obtained a stuttering flag
X = (X1, . . . ,X2k−1), defined as in (11). Whenever the total error e = df(X ,F)
is correctable by our code C, we propose a decoding algorithm based on the
following results.

Proposition 4.11. If there exists i ∈ {1, . . . , k} such that the corresponding
received subspace Xi is non trivial, then we decode X into the unique F ∈ C such
that Xi ⊆ Fi.

Proof. Suppose that a nontrivial subspace Xi is received for some i 6 k. As we
are working in an erasure channel, Xi must be contained in some subspace U of Ci.

15
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Moreover, since Ci is a partial spread, we have that U has to be the only subspace
in Ci that contains Xi. Now, Theorem 4.4 states that |C| = |Ci|. Therefore, we
can recover F as the only flag in C such that Fi = U .

In the case not considered in the previous proposition, that is, when X1 =
· · · = Xk = {0}, the following result holds.

Lemma 4.12. Assume we have received a subspace sequence X = (X1, . . . ,X2k−1)
with X1 = · · · = Xk = {0}. If the total error is correctable then, there exist an
index k < i < 2k such that dim(Xi) > 2(i− k).

Proof. Suppose that dim(Xi) 6 2(i− k), for all i = k+1, . . . , 2k− 1. As we only
allow erasures in the transmission, we know that Xi ⊆ Fi. In this case, it holds:

ei = dS(Xi,Fi) = i = dS(Ci)
2

, for i = 1, . . . , k,

ei = dS(Xi,Fi) > 2k − i = dS(Ci)
2

, for i = k + 1, . . . , 2k − 1.

Hence, for every i, the i-th subspace error exceeds the error-correction capa-
bility of the i-projected code and, as a consequence of Proposition 4.8, the total
error is not correctable, which is a contradiction.

Lemma 4.12 helps us to state the following proposition.

Proposition 4.13. Assume that a sequence of subspaces X = (X1, . . . ,X2k−1) is
received with X1 = · · · = Xk = {0}. Consider the minimum i ∈ {k+1, . . . , 2k−1}
such that dim(Xi) > 2(i − k). Then, we can recover the sent flag F as the only
flag in C such that Xi is contained in Fi.

Proof. Let i be the minimum index in {k + 1, . . . , 2k − 1} such that dim(Xi) >
2(i − k). Recall that Xi ⊆ Fi. Moreover, since Ci is an equidistant 2(i − k)-
intersecting subspace code and dim(Xi) > 2(i− k), no more subspace in Ci than
Fi can contain Xi. Thus, using that our code C is disjoint, we can recover the
sent flag as the only flag in C having Fi as a i-th subspace.

These previous results make the following algorithm work:

Decoding algorithm

Data: A stuttering flag X = (X1, . . . ,X2k−1).
Result: The sent flag F ∈ C.

for 1 6 i 6 2k − 1

if i 6 k and dim(Xi) > 0,

decode Xi into the only Fi ∈ Ci that contains Xi,

return the only flag F ∈ C that has Fi as i-th subspace.

if i > k and dim(Xi) > 2(i− k),
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decode Xi into the only Fi ∈ Ci that contains Xi,

return the only flag F ∈ C that has Fi as i-th subspace.

By means of Lemma 4.12 one of the two previous conditions must be reached.
Hence, our decoding algorithm allows the receiver to recover the sent flag in, at
most, 2k − 1 uses of the channel.

Remark 4.14. Notice that our code C does not need necessarily that the whole
flag has been sent to decode it. During the transmission process, a given flag is
sequentially sent and, at the i-th shot, the receiver gets subspaces X1, . . . ,Xi. At
this moment either Propositions 4.11 or 4.13 could be applied in order to recover
the sent flag. In the worst case, the receiver has to wait until the last shot. That
means that, at the (2k − 1)-th shot, it gets

X = (0, . . . , 0,Xk+1, . . . ,X2k−2,X2k−1),

where dim(Xi) 6 2(i− k), for i = k + 1, . . . , 2k− 2. In this situation, if the total
error is correctable, by Lemma 4.12, we have that dim(X2k−1) has to be 2k − 1.
Thus, X2k−1 = F2k−1 and, at the (2k − 1)-th shot, we can recover F as the only
flag in C having F2k−1 as its (2k − 1)-th subspace.

4.3 General type constructions

We can easily derive constructions of optimum distance flag codes from the con-
struction we provided in Theorem 4.4 for full flag codes. Next we explain these
constructions.

Optimum distance flag codes of any type from planar spreads

Our construction for optimum distance full fag codes from planar spreads of
F2k
q can be modified in order to get optimum distance flag codes of a general

type vector (t1, . . . , tr) just by removing the projected codes of dimensions not
appearing in the vector type. This procedure, that we call puncturing, transforms
any full flag F = (F1, . . . ,F2k−1) into the punctured flag F (t1,...,tr) = (Ft1 , . . . ,Ftr)
of type (t1, . . . , tr). In that way, we can also define the punctured flag code of the
full flag code C constructed in Theorem 4.4 as the set

C(t1,...,tr) = {F (t1,...,tr) | F ∈ C} ⊆ Fq((t1, . . . , tr), n).

Notice that C(t1,...,tr) is also a disjoint flag code and its projected codes are max-
imum distance subspace codes, since they are also projected codes of C. Hence,
by means of Theorem 3.11, the punctured flag code C(t1,...,tr) is an optimum dis-
tance flag code of type (t1, . . . , tr). Besides, if dimension k remains in the type
vector (t1, . . . , tr), by arguing as in the proof of Theorem 4.5 we conclude that
the cardinality of C(t1,...,tr), that is also qk + 1, is maximum.
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Optimum distance flag codes of type up to a divisor of n

In the general universe of Fn
q , the construction of optimum distance flag codes of

type (t1, . . . , tr), being tr a divisor of n, is always possible. To do so, just follow
the ideas we used in the proof of the first part of Proposition 4.3. Let S be a
tr-spread of Fn

q and for every Si ∈ S consider a (tr×n)-matrix of full rank Si such

that Si = rowsp(Si). For every 1 6 j < r, denote by S
(j)
i the matrix composed by

the first tj rows of Si and S
(j)
i = rowsp(S

(j)
i ) the corresponding vector subspace.

It follows that the code

Cj = {S
(j)
i | i = 1, . . . , |S|}

is a partial spread of dimension tj and cardinality |S|. Hence, by means of
Theorem 4.4, the flag code

C = {(S
(1)
i , . . . ,S

(r−1)
i ,Si) | i = 1, . . . , |S|}

is an optimum distance flag code of type (t1, . . . , tr) and has a tr-spread as its
last projected code.

5 Conclusions and future work

In this paper, we have introduced several new concepts related to flag codes, such
as projected subspace codes, disjoint flag codes and optimum distance flag codes.
Besides, we have characterized optimum distance flag codes as disjoint flag codes
having maximum distance constant dimension codes as projected codes.

In our search of constructions for optimum distance full flag codes, we have
focused on the family of full flag codes on Fn

q having a k-spread as a projected
code, for some divisor k of n and we have concluded that, except for n = 3,
these codes can only be constructed on F2k

q . For that case, we have provided a
construction of optimum distance full flag codes based on the properties of planar
spreads. This construction attains the maximum possible size, that is, qk + 1.
Moreover, a decoding algorithm based on the properties of partial spreads and
equidistant constant dimension codes is also given.

In a forthcoming paper, we will address the problem of obtaining a systematic
construction of optimum distance flag codes of general type on Fn

q having a k-
spread as a projected code, being k a divisor of n. It would be interesting to
characterize the admissible vector types for which it is possible to generalize our
model as well as to provide a specific construction.
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