

Riesgo de inundación en España: análisis y soluciones para la generación de territorios resilientes

Riesgo de inundación en España: análisis y soluciones para la generación de territorios resilientes

Editores:

Mª Inmaculada López Ortiz Joaquín Melgarejo Moreno © los autores, 2020 © de esta edición: Universitat d'Alacant

ISBN: 978-84-1302-091-4

Reservados todos los derechos. No se permite reproducir, almacenar en sistemas de recuperación de la información, ni transmitir alguna parte de esta publicación, cualquiera que sea el medio empleado -electrónico, mecánico, fotocopia, grabación, etcétera-, sin el permiso previo de los titulares de la propiedad intelectual.

Coordinado por:

Patricia Fernández Aracil

ÍNDICE

PRESENTACIÓN: DE LAS ROGATIVAS A LA GESTIÓN DE LAS INUNDACIONES ESPAÑA, Mª Inmaculada López Ortiz y Joaquín Melgarejo Moreno	
PRÓLOGO: CONVIVIR CON LA INUNDACIÓN, Jorge Olcina Cantos	
BLOQUE I. FENÓMENOS HIDROMETEOROLÓGICOS Y PLANIFICACIÓN TERRITORIAL	
EFICACIA DE LAS MEDIDAS MULTI-ESCALA PARA REDUCIR EL POTEN EROSIVO Y LOS ARRASTRES DE SEDIMENTOS EN CUENCAS SEMI-ÁRID Luis G. Castillo Elsitdié, Juan T. García Bermejo, Juan Manuel García-Guerrero, Jos María Carrillo Sánchez, Francisco Javier Pérez De La Cruz	OAS, é
PRECIPITACIONES INTENSAS EN LA COMUNIDAD VALENCIANA. ANÁL SISTEMAS DE PREDICCIÓN Y PERSPECTIVAS ANTE EL CAMBIO CLIMÁTICO, Jorge Tamayo Carmona, José Ángel Núñez Mora	ŕ
LIMITACIONES AL USO DEL SUELO EN ZONAS INUNDABLES: LEGISLAC DE AGUAS, URBANÍSTICA Y DE PROTECCIÓN CIVIL, Ángel Menéndez Rexad	CIÓN
FORTALEZAS Y DEBILIDADES DE LOS SISTEMAS DE ALERTA ANTE INUNDACIONES, Gregorio Pascual Santamaría	83
REVISIÓN DE LOS EVENTOS MÁXIMOS DIARIOS DE PRECIPITACIÓN EN DOMINIO CLIMÁTICO DE LA MARINA ALTA Y LA MARINA BAJA (ALICANTE), Javier Valdés Abellán, Mauricio Úbeda Müller	
INUNDACIONES Y CAMBIO CLIMÁTICO EN EL MEDITERRÁNEO, María a Carmen Llasat Botija	
DANA 2019 Y ASPECTOS RELATIVOS A LA ESTIMACIÓN Y TRATAMIENT DEL RIESGO ASOCIADO A INUNDACIONES, Luis Altarejos García, Juan T. Ga Bermejo, José María Carrillo Sánchez, Juan Manuel	arcía
IMPLANTACIÓN DEL SERVICIO SMART RIVER BASINS EN LA VEGA BADEL SEGURA, Álvaro Rogríguez García, Ramón Bella Piñeiro, Xavier Llort, Simón Pulido Leboeuf, Manuel Argamasilla Ruiz	José
METEOROLOGÍA DE LAS INUNDACIONES MEDITERRÁNEAS, Agustí Janso	
IMPLANTACIÓN DE UN SISTEMA INTEGRADO DE PREDICCIÓN Y ALER DE INUNDACIONES EN GALICIA, Jerónimo Puertas Agudo	
PLATAFORMAS DE ALERTA TEMPRANA Y DE GESTIÓN DE AVENIDAS. VISIÓN DESDE LA ADMINISTRACIÓN LOCAL, Miguel Fernández Mejuto	225
EL RIESGO DE INUNDACIÓN EN RAMBLAS Y BARRANCOS MEDITERRÁNEOS, Ana Mª Camarasa-Belmonte	239
ESTADO DE IMPLANTACIÓN DE LOS PLANES DE GESTIÓN DEL RIESGO INUNDACIÓN (P.G.R.I.) EN ESPAÑA, Mónica Aparicio Martín, Juan Francisco Arrazola Herreros, Francisco J. Sánchez Martínez	
INUNDABILIDAD Y PLANIFICACIÓN URBANISTICA: HACIA EL ACLOPLAMIENTO DE LA CIUDAD A LA MATRIZ BIOFÍSICA DEL	

TERRITORIO, Pedro Górgolas Martín
EVALUACIÓN DE LA CALIDAD QUÍMICA DE LOS AZARBES DEL BAJO SEGURA Y EL BAIX VINALOPÓ TRAS LAS INUNDACIONES DE SEPTIEMBRE DE 2019, Gema Marco Dos Santos, Ignacio Meléndez Pastor, María Belén Almendro Candel, José Navarro Pedreño, Ignacio Gómez Lucas
DELIMITACIÓN DE ZONAS INUNDABLES: EVOLUCIÓN LEGISLATIVA Y RÉGIMEN VIGENTE, Ángel Menéndez Rexach
PARTICULARIDADES DE LA PERIURBANIZACIÓN EN EL LITORAL MEDITERRÁNEO COMO CONDICIONANTE DEL RIESGO DE INUNDABILIDAD, Antonio Gallegos Reina
LA CARTOGRAFÍA DE VULNERABILIDAD COMO BASE DE LOS PLANES DE EMERGENCIA: ANÁLISIS-DIAGNÓSTICO DEL TÉRMINO MUNICIPAL DE DAYA VIEJA (ALICANTE), Antonio Oliva Cañizares, Alejandro Sainz-Pardo Trujillo y Esther Sánchez Almodóvar
VULNERABILIDAD Y CAMBIO CLIMÁTICO TERRITORIAL EN LA SUBCUENCA DEL RÍO MACHÁNGARA, PROVINCIA DEL AZUAY (ECUADOR), Johnny Mena Iza, Yessenia Alquinga Herrera, Teresa Palacios Cabrera
PREDICCIÓN DE INUNDACIONES A PARTIR DE TORMENTAS DE DISEÑO Y CAMBIOS EN EL TERRITORIO EN CINCO CUENCAS HIDROLÓGICAS (SE ESPAÑA), Antonio Jódar Abellán, Javier Valdés Abellán, Concepción Pla, Miguel Ángel Pardo Picazo, Pedro Jiménez Guerrero, Daniel Prats
ESTIMACIÓN GEOESTADÍSTICA DE CAUDALES MÁXIMOS DE AVENIDA EN EL TRAMO TORO-ZAMORA: POSIBLE INCIDENCIA DE LA SINUOSIDAD DEL RÍO DUERO EN LA LAMINACIÓN DE LAS PUNTAS DE CRECIDA, José Fernando Muñoz Guayanay, Carolina Guardiola Albert y Andrés Díez Herrero
EFECTOS DE LA DANA DE SEPTIEMBRE DE 2019 SOBRE LA SALINIDAD DE LOS SUELOS Y LAS AGUAS EN LA ZONA DE CARRIZALES (ELCHE-ALICANTE), José Miguel de Paz, Alberto Lamberti, Fernando Visconti
PREVENCIÓN FRENTE A PRESENCIA DE TRIHALOMETANOS EN EL AGUA DE CONSUMO HUMANO DURANTE INUNDACIONES, Arturo Albaladejo Ruiz, María Yolanda Pérez Bragado
ANÁLISIS DEL CAMBIO DE USO DEL SUELO Y SU IMPACTO EN LA RESPUESTA HIDROLÓGICA EN LA CUENCA DEL EMBALSE DE GUADALEST, Teresa Palacios Cabrera, Javier Valdés Abellan, Antonio Jódar Abellán, Rafael Alulema. 399
RECIENTES EPISODIOS DE LLUVIAS E INUNDACIONES EN LA DEPRESIÓN PRELITORAL MURCIANA, Encarnación Gil-Meseguer, Miguel Borja Bernabé-Crespo, José María Gómez-Espín
RECIENTES EPISODIOS DE LLUVIAS E INUNDACIONES EN EL LITORAL DE LA REGIÓN DE MURCIA, Miguel Borja Bernabé-Crespo, Encarnación Gil- Meseguer, José María Gómez-Espín
SISTEMA DE ALERTA ANTE INUNDACIONES EN LA CIUDAD DE MURCIA, Pedro Daniel Martíenz Solano, Lorena Martínez Chenoll, Dorota Nowicz
CONFLICTOS ENTRE DESARROLLO URBANO E INUNDABILIDAD EN LA AGLOMERACIÓN URBANA DE GRANADA, Alejandro L. Grindlay Moreno, F. Emilio, Molero Melgarejo, Jorge Hernández Marín

	VARIABILIDAD DE LA PRECIPITACIÓN EN LA CUENCA DEL SEGURA DURANTE 1951-2018, Amar-Halifa-Marín, Miguel Ángel Torres Vázquez, Juan Sndrés García-Valero, Antonio Jesús Castillo Cascales, Juan Esteban Palenzuela Cruz	
	LOS BARRANCOS DE LA SIERRA DE ORIHUELA EN LAS INUNDACIONES E BAJO SEGURA: EL CASO DE LA RAMBLA DE BONANZA, Estela García Botella Antonio Prieto Cerdán, Juan Antonio Marco Molina, Pablo Giménez Font, Ascensión Pa Blanco	a, dilla
	INUNDACIÓN POR TSUNAMIS. SIMULACIONES NUMÉRICAS A MUY ALTA RESOLUCIÓN, Carlos Sánchez Linares, Alejandro González del Pino, Jorge Macías Sánchez	
	LA CONTAMINACIÓN DE LAS AGUAS SUBTERRÁNEAS EN LOS ÁMBITOS URBANOS. UN ELEMENTO A TENER EN CUENTA PARA LA PLANIFICACIÓ DEL TERRITORIO, Luis Miguel García Lozano	
BL	OQUE II. MEDIDAS DE MITIGACIÓN E INFRAESTRUCTURAS	. 499
	ORDENACIÓN DEL TERRITORIO PARA LA GESTIÓN DEL RIESGO DE INUNDACIONES: PROPUESTAS, Jorge Olcina Cantos	. 501
	EVOLUCIÓN DE LA GESTIÓN DE LAS INUNDACIONES EN ESPAÑA: RETOS FUTUROS, Teodoro Estrela Monreal	
	LA GESTIÓN DE LAS AGUAS PLUVIALES EN ÁREAS URBANAS: DE RIESGO RECURSO, María Hernández Hernández, David Sauri Pujol, Álvaro-Francisco Morote Seguido	
	CRECIDAS, INUNDACIONES Y RESILIENCIA: RESTAURACIÓN FLUVIAL CONTRA LOS FALSOS MITOS, Alfredo Ollero Ojeda	. 549
	EXPERIENCIAS Y PROPUESTAS PARA AUMENTAR LA RESILIENCIA URBA FRENTE A INUNDACIONES, Mª Elena García de Consuegra Priego	
	ESTADO DE RIESGO DE LA VEGA BAJA DEL RÍO SEGURA FRENTE A INUNDACIONES. NECESIDAD DE REALIZAR UN PLAN DE INFRAESTRUCTURAS HIDRÁULICAS, José Vicente Benadero García-Morato, Ped Ignacio Muguruza Oxinaga, Jordi Marín Abdilla	
	INCREMENTO DE LOS CAUDALES MÁXIMOS DE DISEÑO Y POSIBLE NO ESTACIONARIEDAD DE FENÓMENOS HIDROLÓGICOS EXTREMOS RELATIVOS A CRECIDAS E INUNDACIONES, Francisco Cabezas Calvo-Rubio	. 611
	EL EFECTO LAMINADOR DE LOS EMBALSES DURANTE LAS AVENIDAS, L Garrote de Marcos, Paola Bianucci	
	LAS POLÍTICAS DE GESTIÓN DE RIESGOS Y DESASTRES DE DISTINTOS ORGANISMOS MULTILATERALES Y SU REPERCUSIÓN SOBRE EL DESARROLLO DE INFRAESTRUCTURAS DE PROTECCIÓN FRENTE A INUNDACIONES, Ignacio Escuder Bueno	. 647
	LA ADAPTACIÓN COMO HERRAMIENTA CLAVE PARA DISMINUIR LOS RIESGOS DE INUNDACIÓN, Francisco Javier Sánchez Martínez, Mónica Aparicio Martín, Juan Francisco Arrazola Herreros	. 659
	ESTUDIO DE IMPACTO DE TSUNAMIS EN LAS COSTAS ESPAÑOLAS, Miguel Llorente Isidro, Marta Fernández-Hernández, Alejandro González del Pino, Julián Garci Mayordomo, Juan Vicente Cantavella Nadal, Jorge Macías Sánchez, Juan-Tomás Vázque Carlos Sánchez Linares, Carlos Paredes Bartolomé, Ricardo León Buendía	l ía- ez,

ENFOQUE PROBABILÍSTICO PARA LA SEGURIDAD HIDROLÓGICA DE INFRAESTRUCTURAS, Alvaro Sordo-Ward, Iván Gabriel-Martín, Luis Garrote de
<i>Marcos</i>
CONSIDERACIONES SOBRE LA PELIGROSIDAD EN ZONAS URBANAS FRENTE A NUNDACIONES MEDIANTE SIMULACIONES A PARTIR DE MODELOS 2D, José María Carrillo Sánchez, Luis G. Castillo Elsitdié, Juan T. García Bermejo, Juan Manuel García-Guerrero, Luis Altarejos García, Francisco Javier Pérez De La Cruz
LA GESTIÓN EXTRAORDINARIA DE GRANDES INFRAESTRUCTURAS DURANTE LA DANA DE SEPTIEMBRE DE 2019: EL AZUD DE OJÓS, Carlos Marco Ayala
NUEVOS USOS EN EL NUEVO CAUCE DEL TURIA COMPATIBLES CON SU DEFENSA DE VALENCIA FRENTE A INUNDACIONES, Francisco J. Vallés-Morán, Beatriz Nácher Rodríguez759
SISTEMAS URBANOS DE DRENAJE SOSTENIBLE. TIPOS Y OBJETIVOS, Héctor
Fernández Rodríguez, Arturo Trapote Jaume, Miguel Fernández Mejuto773
INFLUENCIA DE LOS SISTEMAS URBANOS DE DRENAJE SOSTENIBLE (SUDS) EN EL DISEÑO DE COLECTORES Y EN EL RIESGO DE INUNDACIÓN, Arturo Trapote Jaume
RESEARCH ON URBAN WATERLOGGING IN CHINA, Yang Yang797
GESTIÓN DEL RIESGO DE INUNDACIÓN EN LA PLANIFICACIÓN HIDROLÓGICA DE LA DEMARCACIÓN HIDROGRÁFICA DEL SEGURA, José Alberto Redondo Orts, M. Inmaculada López Ortiz805
EL PROBLEMA DE LA ESCORRENTÍA PLUVIAL EN EL NÚCLEO URBANO DE ASPE (ALICANTE), Esther Sánchez Almodóvar, Javier Martí Talavera
AS OBRAS DE PREVENÇÃO DE INUNDAÇÕES NO MARCO DA ECONOMIA CIRCULAR, Felipe da Silva Claudino
DEFINICIÓN Y CARACTERIZACIÓN DE LA AMENAZA HIDROLÓGICA. DESARROLLO DE UN MODELO METODOLÓGICO PARA LA GESTIÓN RESILIENTE DE LAS INFRAESTRUCTURAS HIDRÁULICAS URBANAS, Ramón Egea Pérez, Francisco José Navarro González
EFECTO SOBRE LAS INUNDACIONES DE LA IMPLEMENTACIÓN DE PRÁCTICAS AGRÍCOLAS EN LA RAMBLA DEL ALBUJÓN, Adrián López Ballesteros, Javier Senent Aparicio, Julio Pérez Sánchez, Patricia Jimeno Sáez
METODOLOGÍA DE REHABILITACIÓN DE REDES DE DRENAJE MEDIANTE LA INCLUSIÓN DE ELEMENTOS DE CONTROL HIDRÁULICO, Leonardo Bayas- Jiménez, F. Javier Martínez-Solano, Pedro L. Iglesias-Rey
SOSTENIBILIDAD COMO MEDIDA DE MITIGACIÓN DE INUNDACIONES: UNA BREVE REFLEXIÓN, Francine Cansi, Paulo Márcio Cruz, Liton Lannes Pilau Sobrinho
LA RAMBLA DE ABANILLA-BENFERRI COMO PARADIGMA PARA EL ESTUDIO DEL CONOCIMIENTO TRADICIONAL RELATIVO AL APROVECHAMIENTO DE LAS AGUAS DE AVENIDA, Juan Antonio Marco Molina, Pablo Giménez Font, Ascensión Padilla Blanco, Estela García Botella, Antonio Prieto Cerdán

LA RECUPERACIÓN DE COSTES Y LA FINANCIACIÓN DE LAS MEDIDAS DE MITIGACIÓN DE DAÑOS DE INUNDACIONES, Marcos García-López, Borja Montaño, Joaquín Melgarejo
SISTEMA DE RETENCIÓN DE SÓLIDOS Y ELEMENTOS FLOTANTES PROCEDENTES DE ALIVIOS DEL SISTEMA DE ALCANTARILLADO EN LA CIUDAD DE ALICANTE, Luis Gabino Cutillas Lozano, Miguel Rodriguez Mateos 907
SOLUCIONES A LAS INUNDACIONES DE LA CALA DE FINESTRAT, Miguel Angel Pérez Pascual, Pablo Alemany Sánchez
BLOQUE III. EVALUACIÓN SOCIOECONÓMICA, AMBIENTAL Y JURÍDICA 931
PLANIFICACIÓN SECTORIAL Y GESTIÓN DEL RIESGO DE INUNDACIONES: AVANCES EN LA ESTRATEGIA DE INTEGRACIÓN TÉCNICO-JURÍDICA, Asensio Navarro Ortega
SEGURO DE INUNDACIÓN EN ESPAÑA: EL SEGURO DE RIESGOS EXTRAORDINARIOS, Francisco Espejo Gil
LA COMUNICACIÓN, UN PILAR FUNDAMENTAL EN LA GESTIÓN DE RIESGOS NATURALES, Fermín Crespo Rodríguez
VULNERABILIDAD Y ADAPTACIÓN A LAS INUNDACIONES EN ESPACIOS TURÍSTICOS DEL LITORAL MEDITERRÁNEO, Anna Ribas Palom
LA RESPONSABILIDAD DE LA ADMINISTRACIÓN EN SUPUESTOS DE DAÑOS ORIGINADOS POR INUNDACIONES: SITUACIÓN ACTUAL Y PERSPECTIVAS DE FUTURO, Jesús Conde Antequera
EVALUACIÓN DE IMPACTO SOCIAL COMO HERRAMIENTA PARA LA GESTIÓN DEL RIESGO DE DESASTRE POR INUNDACIÓN, Antonio Aledo, Pablo Aznar-Crespo, Guadalupe Ortiz
LAS NUEVA ESTRATEGIA DEL DERECHO EN LA REGULACIÓN Y GESTIÓN DE LOS RIESGOS DE INUNDACIONES, José Esteve Pardo
METODOLOGÍA Y RESULTADOS DEL ESTUDIO DE COSTE BENEFICIO PARA OBRAS ESTRUCTURALES EN LOS PLANES DE GESTIÓN DEL RIESGO DE INUNDACIÓN (P.G.R.I.), Francisco J. Sánchez Martínez, Juan Antonio Hernando Cobeña, Mónica Aparicio Martín, Silvia Cordero Rubio, Miguel Aldea Pozas, Elena Martínez Bravo
ANÁLISIS DE LA PERCEPCIÓN SOCIAL PARA LA GESTIÓN Y COMUNICACIÓN DEL RIESGO DE INUNDACIONES, Juan Antonio García Martín, María Amérigo Cuervo-Arango, José María Bodoque del Pozo, Andrés Díez-Herrero, Raquel Pérez-López, Fernando Talayero Sebastián
¿ES LA NORMATIVA ESPAÑOLA UNA HERRAMIENTA ADECUADA PARA LA PREVENCIÓN DE LOS RIESGOS NATURALES?, Jesús Garrido Manrique
EL FORO FUERZA VEGA BAJA: NECESIDADES Y POSIBILIDADES DE FINANCIACIÓN, Armando Ortuño Padilla, Santiago Folgueral Moreno, Fabio Amorós Fructuoso
METODOLOGÍAS PARA LA ESTIMACIÓN ECONÓMICA DE LOS DAÑOS CAUSADOS POR AVENIDAS E INUNDACIONES, Alberto del Villar García 1129
LA FORMACIÓN Y PERCEPCIÓN SOBRE EL RIESGO DE INUNDACIÓN. UNA EXPLORACIÓN A PARTIR DE LAS REPRENSENTACIONES SOCIALES DEL FUTURO PROFESORADO DE EDUCACIÓN PRIMARIA, Álvaro-Francisco Morote,

María Hernández	11
-	O Y LA EVALUACIÓN DE LOS RIESGOS DE Aracil11
SETOR URBANÍSTICO COMO B	TILIZAÇÃO DAS ÁGUAS RESIDUAIS NO ENEFÍCIO DO TURISMO NACIONAL, Joline
RIESGO POR INUNDACIONES S INDÍGENA NASA (CAUCA-COL	IMIENTO INDÍGENA PARA LA GESTIÓN DEL ÚBITAS. EL CASO DE LA COMUNIDAD OMBIA), Isaleimi Quiguapumbo Valencia, Antonio 11
INUNDACIONES EN LA CUENCA Rodolfo Baesso Moura, Fernando Rod	CCIÓN SOCIAL DE LA AMENAZA: A DEL RÍO JUQUERI, SÃO PAULO – BRASIL, cha Nogueira, Rafael Costa e Silva, Samia Nascimento, va, João Henrique José Vieira1
'VENERO CLARO-AGUA' (ÁVIL	NFANTIL EN EL RIESGO DE INUNDACIONES A), Andrés Díez Herrero, Mario Hernández Ruiz, Pa
RIESGO DE INUNDACIONES: PI Mario Hernández Ruiz, Miguel Garcí	CONOCIMIENTO INFANTIL SOBRE EL ROGRAMA 'VENERO CLARO-AGUA' (ÁVILA) a-Pozuelo Ben, Andrés Díez Herrero, Carlos Carrero
PRIMERA APROXIMACIÓN AL	REGISTRO DE AVENIDAS E INUNDACIONES A DE SEGOVIA, Andrés Díez Herrero12
	LES POPULARES EN TORNO A LAS AVENIDA INCIA DE SEGOVIA, Andrés Díez Herrero 12
CUENCA DEL SEGURA: UNA PE	NTIVAS CONTRA INUNDACIONES EN LA ERSPECTIVA HISTÓRICO-JURÍDICA, Francisc 12
ESTRATEGIA PARA LA IMPOSI EXPLORACIÓN EN LA REGIÓN HIDROELÉCTRICAS EN BRASII	NES GUBERNAMENTALES COMO UNA CIÓN DE UN NUEVO CICLO DE AMAZÓNICA: EL CASO DE LAS L, Pedro Abib Hecktheuer, Maria Cláudia da Silva
	DAÑOS POTENCIALES SOBRE ISPORTE POR INUNDACIONES EN EL TRAM Romana García, Andrés Díez Herrero
EL GÉNERO COMO FACTOR DI POLÍTICAS PÚBLICAS AMBIEN	E FORMULACIÓN PARA LA CREACIÓN DE TALES, Marcus Alexsander Dexheimer, Mably
CARTOGRAFÍA DE RIESGOS DI PROPUESTAS PARA BRASIL DE	E INUNDACIÓN Y PLANIFICACIÓN. ESDE LA EXPERIENCIA ESPAÑOLA, Andrés prreira
EVALUACIÓN DE LA INTEGRA PARTICIPACIÓN PÚBLICA EN I	CIÓN DE LA DIMENSIÓN SOCIAL Y LA LOS PLANES DE GESTIÓN DEL RIESGO DE TINUIDAD PARADIGMÁTICA?, Ángela Olcina

RESPONSABILIDAD ADMINISTRATIVA DE LOS ENTES LOCALES I	POR FALTA
DE MANTENIMIENTO O INDADECUACIÓN DE LAS INSTALACION	ES DE
SANEAMIENTO Y ALCANTARILLADO, Belén Burgos Garrido	1293
DE LA ROGATIVA POR EL AGUA A LA INTERVENCIÓN PREVENTI	IVA POR
INUNDACIÓN. LA HUELLA DEL DERECHO EN LA FACHADA MEDI	ITERRÁNEA
PENINSULAR (I), M ^a Magdalena Martínez Almira	1305
PUBLICACIONES CIENTÍFICAS ESPAÑOLAS SOBRE INUNDACION	ES EN EL
ÁMBITO INTERNACIONAL: ANÁLISIS BIBLIOMÉTRICO DE LA WE	EB OF
SCIENCE, Andrés Díez Herrero, Julio Garrote Revilla	1321

INFLUENCIA DE LOS SISTEMAS URBANOS DE DRENAJE SOSTENIBLE (SUDS) EN EL DISEÑO DE COLECTORES Y EN EL RIESGO DE INUNDACIÓN

Arturo Trapote Jaume

Dr. Ingeniero de Caminos, Canales y Puertos Instituto Universitario del Agua y de las Ciencias Ambientales Universidad de Alicante, España atj@ua.es

https://orcid.org/0000-0003-2084-270X

RESUMEN

El objetivo del presente trabajo es evaluar la influencia de los Sistemas Urbanos de Drenaje Sostenible (SUDS) en el diseño de los colectores de aguas pluviales. Para ello, se ha estudiado el caso hipotético de un sector urbano en el que sus superficies tradicionalmente impermeables (pavimentos de aceras y calzadas, tejados y cubiertas de edificios, etc.), son sustituidos por SUDS (pavimentos permeables, cubiertas y fachadas vegetadas, zanjas y pozos filtrantes, jardines de lluvia, estanques de retención, depósitos de detención, etc.), de manera que se tienen distintos porcentajes o estados de impermeabilización del sector. Para cada estado de impermeabilización se ha calculado el caudal de escorrentía y el correspondiente diámetro del colector de drenaje. Finalmente, se ha realizado un análisis del riesgo de inundación, basado en la probabilidad de ocurrencia de las precipitaciones según diferentes periodos de retorno. Los resultados obtenidos demuestran que con los SUDS disminuyen los caudales de escorrentía y, consecuentemente, se reducen los diámetros del colector de drenaje, al mismo tiempo que disminuyen los riesgos de inundación por desbordamiento del colector.

1. INTRODUCCIÓN

El efecto más característico del proceso de urbanización es la impermeabilización del suelo, que altera el ciclo hidrológico natural, especialmente el modelo de transformación de la lluvia en escorrentía. La impermeabilización del suelo incide significativamente en el balance infiltración-escorrentía, al disminuir la capacidad de infiltración del terreno y, consecuentemente, aumentar los caudales de escorrentía. Así, en un terreno natural la infiltración representa entre el 80-90% de la precipitación y la escorrentía el 10-20%, en una zona residencial (densidad media-baja) la infiltración puede suponer el 50-60% y la escorrentía el 40-50%, mientras que en un área altamente urbanizada la infiltración sería inferior al 10% y la escorrentía podría superar el 90% (GSMM, 2016).

Los denominados Sistemas Urbanos de Drenaje Sostenible (SUDS) contribuyen a paliar los efectos adversos de la urbanización, ya que permiten recuperar, al menos parcialmente, las características naturales de infiltración del suelo. A título de ejemplo, en la Fig. 1 se representan los diferentes hidrogramas de respuesta de una cuenca urbana ante un mismo aguacero, según su estado de urbanización: en la fase previa de desarrollo de la urbanización (*pre-development*, *greenfield*), tras el desarrollo urbano sin SUDS (*post-development*, *without flow attenuation*) y urbanizada con la implantación de SUDS para el control de puntas y protección frente inundaciones (*with flow attenuation*). Se puede observar que, aunque el caudal punta es el mismo tanto en la fase previa al desarrollo urbano como en la fase posterior al mismo, con los SUDS la diferencia de áreas de ambos

hidrogramas indica un incremento de volumen de la escorrentía debido a la urbanización (CIRIA, 2015).

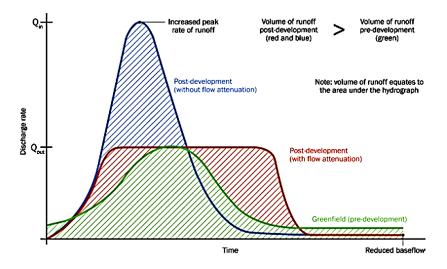


Figura 1. Ejemplo de hidrogramas de escorrentía de una cuenca en diferentes fases de desarrollo urbano. Fuente: CIRIA (2015).

Un análisis hidrológico más pormenorizado se muestra gráficamente en la Fig. 2, en donde se representa el hidrograma de respuesta de una cuenca, antes y después de ser urbanizada, ante un evento de precipitación de duración D e intensidad I variable (pluviograma de la parte superior de la figura). Como se puede observar, al impermeabilizar la cuenca, se genera un caudal pico o punta (Q_p) mucho mayor y se reduce el tiempo de desfase de la punta (T_{dp}) , esto es, el tiempo de llegada al punto de control. Asimismo, la pendiente más pronunciada de la rama ascendente del hidrograma denota que la velocidad de llegada es mucho mayor. A partir de Q_p el caudal desciende bruscamente, llegando a situarse por debajo del caudal base (Q_b) que se tendría en condiciones naturales.

En la cuenca pre-urbanizada (natural), una gran parte del agua precipitada se infiltra al subsuelo mientras el resto fluye por la superficie en forma de escorrentía. En cambio, en una cuenca post-urbanizada (impermeabilizada), la mayor parte del agua de lluvia fluye por la superficie, en forma de escorrentía (Perales, 2014).

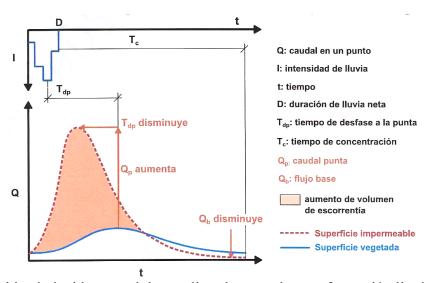


Figura 2. Cambios inducidos por el desarrollo urbano en la transformación lluvia-escorrentía. Fuente: Perales (2014).

A la hora de considerar la implementación de SUDS, cabría distinguir, en general, dos casos: el primero -más deseable- sería aquel en que se integrarían los SUDS en la fase de proyecto o de planeamiento urbanístico (planes generales, planes parciales, etc.), y el segundo sería el de un suelo urbano consolidado en el que, progresivamente, se fueran sustituyendo las superficies impermeables (pavimentos de calzadas y aceras, tejados y cubiertas de edificios, etc.), por determinados SUDS que permeabilizan el suelo (pavimentos permeables, cubiertas y fachadas vegetadas, pozos y zanjas filtrantes, jardines de lluvia, etc.). Lo que se pretende en ambos casos es reducir los caudales de escorrentía, difiriendo únicamente en cuanto a la etapa en que se implementarían los SUDS, esto es, antes o después de la urbanización del suelo, siendo válido el estudio que aquí se desarrolla para cualquiera de ellos.

Para realizar el estudio se ha supuesto un sector de suelo urbano (cuenca urbana), que drena sus aguas pluviales (escorrentía) a través de un colector, y se ha evaluado la influencia de la implementación de SUDS en el diseño del mismo, al ir disminuyendo el grado de impermeabilización de la cuenca y, consecuentemente, los caudales de escorrentía. Asimismo, se ha llevado a cabo un análisis del riesgo de inundación por desbordamiento del colector.

2. METODOLOGÍA

Se supone el caso de una cuenca o sector urbano, del que se conocen su área (A) y la longitud (L_c) y la pendiente (J_c) del cauce principal (alcantarilla). El sector drena sus aguas de escorrentía mediante un colector de pendiente (J), conocida, que arranca en el punto de desagüe del sector.

Se trata de obtener los caudales generados en el sector por una cierta precipitación, para diversos grados de impermeabilización y para un determinado periodo de retorno. Obtenidos los caudales, se calcularán los correspondientes diámetros del colector, lo que permitirá realizar un análisis comparativo de la influencia de los SUDS en su diseño. Posteriormente, se analizarán las implicaciones en el riesgo de inundación.

La metodología seguida comprende el cálculo sucesivo de las variables y parámetros que se indican a continuación:

- 1) Tiempo de concentración de la cuenca
- 2) Coeficientes de escorrentía
- 3) Intensidad de la precipitación
- 4) Coeficiente de uniformidad temporal de la precipitación
- 5) Caudales punta de escorrentía
- 6) Diámetros del colector de drenaje
- 7) Análisis del riesgo de inundación

3. RESULTADOS Y DISCUSIÓN

A los efectos del presente estudio, se consideran los siguientes datos base de partida:

- Área de la cuenca: $A = 0.5 \text{ km}^2$
- Longitud del cauce principal: Lc = 1 km
- Pendiente del cauce principal: Jc = 0.008 m/m
- Pendiente del colector de drenaje J = 0.005 m/m

3.1. Tiempo de concentración de la cuenca (t_c)

El tiempo de concentración de la cuenca (t_c) se obtiene aplicando la siguiente expresión (MF, 2016):

$$t_{c} = 0.3 \cdot L_{c}^{0.76} \cdot J_{c}^{-0.19} (1)$$

Sustituyendo valores en la Ec. (1), se tiene:

$$t_c = 0.3 \cdot 1^{0.76} \cdot 0.008^{-0.19} = 0.75 \text{ horas} = 45 \text{ minutos}$$

3.2. Coeficientes de escorrentía (C)

El coeficiente de escorrentía (C) pueden obtenerse con la siguiente ecuación lineal (GSMM, 2016):

$$C = 0.05 + 0.009 \cdot I_{imp}$$
 (2)

donde I_{imp} es el grado o índice de impermeabilización de la cuenca (%).

La Tabla 1 recoge los valores de C en función de I_{imp} y respectivos porcentajes de reducción de C (%rC) según las reducciones porcentuales de I_{imp} (%r I_{imp}).

I _{imp} (%)	%rI _{imp}	C	%rC
90	0,00	0,86	0,00
81	10,00	0,78	9,30
72	20,00	0,70	18,61
63	30,00	0,62	27,91
54	40,00	0,54	37,21
45	50,00	0,46	46,51
36	60,00	0,37	56,98
27	70,00	0,29	66,23

Tabla 1. Valores del coeficiente de escorrentía (C) para diferentes grados de impermeabilización de la cuenca (I_{imp}) y porcentajes de reducción respectivos (%rC y %rI_{imp}). Fuente: elaboración propia.

3.3. Intensidad de la precipitación (I)

Para determinar la intensidad de la precipitación (I) se ha fijado un periodo de retorno (T) de 5 años, típico de las redes de drenaje urbanas (CEDEX, 2007). Asimismo, se considera que para la cuenca de estudio existen curvas de Intensidad-Duración-Frecuencia (I-D-F), según muestra la Fig. 3.

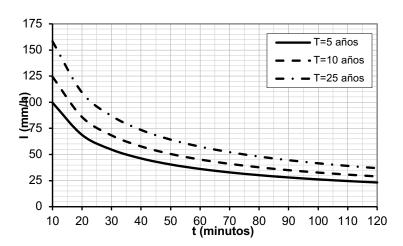


Figura 3. Curvas I-D-F (supuestas) de la zona de estudio. Fuente: elaboración propia.

Para T = 5 años y una duración del aguacero (t) igual a t_c (45 minutos), la intensidad de la precipitación es (entrando en la gráfica de la Fig. 3): I = 43 mm/h

3.4. Coeficiente de uniformidad temporal de la precipitación (Kt)

El coeficiente de uniformidad temporal de la precipitación (K_t) se determina con la siguiente expresión:

$$K_{t} = 1 + \frac{t_{c}^{1,25}}{t_{c}^{1,25} + 14}$$
 (3)

Sustituyendo valores en la Ec. (3), se tiene:

$$K_t = 1 + \frac{0.75^{1.25}}{0.75^{1.25} + 14} = 1.05$$

3.5. Caudales punta de escorrentía (Q_p)

Para calcular los caudales punta de escorrentía (Q_p) utilizamos el Método Racional Modificado (MF, 2016), según el cual el caudal punta correspondiente al período de retorno T en el punto de desagüe de la cuenca es:

$$Q_{p} = \frac{I \cdot C \cdot A \cdot K_{t}}{3.6}$$
 (4)

En la Tabla 2 se recogen los caudales punta (Q_p) -obtenidos sustituyendo valores en la Ec. (4): A = 0,5 km², $K_t = 1,05$, T = 5 años e I = 43 mm/h, y teniendo en cuenta la Ec (2)- para diferentes grados de impermeabilización (I_{imp}) del sector urbano de estudio (apartado 3.2), junto con las reducciones porcentuales de Q_p (%r Q_p) en función de los porcentajes de reducción de I_{imp} (%r I_{imp}).

I _{imp} (%)	$Q_p (m^3/s)$	%rI _{imp}	%rQp
90	5,4	0,00	0,00
81	4,9	10,00	9,26
72	4,4	20,00	18,52
63	3,9	30,00	27,78
54	3,4	40,00	37,04
45	2,9	50,00	46,30
36	2,3	60,00	57,41
27	1,8	70,00	66,67

Tabla 2. Valores de los caudales punta de escorrentía (Q_p) en función del grado de impermeabilización del sector (I_{imp}) y respectivas reducciones porcentuales (%r Q_p y % I_{imp}). Fuente: elaboración propia.

Obviamente, puesto que existe una relación lineal (proporcional) entre el caudal punta de escorrentía (Q_p) y el grado de impermeabilización del sector (I_{imp}) , las reducciones porcentuales del caudal punta $({}^{\circ}\!\!\!/ r Q_p)$ también serán proporcionales al grado de impermeabilización $({}^{\circ}\!\!\!/ r I_{imp})$. Es decir, las reducciones porcentuales del grado de impermeabilización implican idénticas reducciones porcentuales del caudal punta de escorrentía.

3.6. Diámetros del colector de drenaje (D)

Para calcular los diámetros del colector de drenaje (D) correspondientes a los caudales punta de escorrentía (Q_p) anteriormente obtenidos, emplearemos la fórmula de Manning (Chow, 1994), considerando flujo permanente y uniforme:

$$Q_{P} = \frac{1}{n} \cdot J^{1/2} \cdot R_{h}^{2/3} \cdot S$$
 (5)

donde, n (adimensional) es el coeficiente de rugosidad de Manning, J (m/m) la pendiente geométrica del colector, R_h (m) el radio hidráulico (relación entre el área ocupada por el agua en el colector y el perímetro mojado) y S (m²) el área ocupada por el agua en el colector.

Aunque en la práctica los colectores se diseñan a sección parcialmente llena (75-85%), asumiremos que el colector va a sección llena ($R_h = D/4$), pero sin entrar en carga, es decir, funciona en el límite de lámina libre (a los efectos del análisis que nos ocupa esta hipótesis es válida y no desvirtúa los resultados).

Despejando D (m) de la Ec. (5), teniendo en cuenta que $R_h = D/4$ y que $S = \pi D^2/4$, se tiene:

$$D = \left(\frac{n}{0.31 \cdot J^{1/2}}\right)^{0.375} \cdot Q_{P}^{0.375}$$
 (6)

Considerando que el conducto es de hormigón, n = 0.013 (Chow, 1994) y que J = 0.005, la Ec. (6) puede escribirse como:

$$D = 0.822 \cdot Q_P^{0.375} \qquad (7)$$

En la Tabla 3 se recogen los diámetros del colector de drenaje (D), obtenidos mediante la Ec. (7) para cada uno de los caudales punta previamente calculados (Tabla 2), según los diferentes grados de impermeabilización (I_{imp}) del sector urbano de estudio, junto con las reducciones porcentuales de D (%rD) en función de los porcentajes de reducción de I_{imp} (%rI_{imp}).

La gráfica de la Fig. 4 muestra los valores de las reducciones porcentuales de D (%rD) en función de los porcentajes de reducción de I_{imp} (%rI_{imp}) y la curva de tendencia. Se observa que las reducciones porcentuales de D (%rD) en función de los porcentajes de reducción de I_{imp} (%rI_{imp}) siguen una curva polinómica de 2º grado creciente (curva de regresión parabólica), cuya ecuación es:

$$%rD = 0.002 \cdot (%rI_{imp})^2 + 0.3186 \cdot (%rI_{imp}) + 0.3725$$
 (R² = 0.9946) (8)

I _{imp} (%)	D (m)	%rI _{imp}	%rD
90	1,55	0,00	0,00
81	1,49	10,00	3,87
72	1,43	20,00	7,74
63	1,37	30,00	11,61
54	1,30	40,00	16,13
45	1,22	50,00	21,29
36	1,13	60,00	27,10
27	1,03	70,00	33,55

Tabla 3. Valores de los diámetros del colector (D) en función del grado de impermeabilización del sector (I_{imp}) y respectivas reducciones porcentuales (%rD y %rI_{imp}). Fuente: elaboración propia.

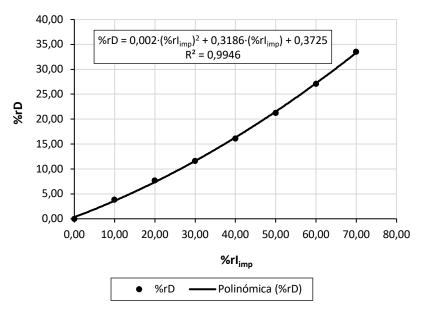


Figura 4. Valores de las reducciones porcentuales de D (%rD) en función de los porcentajes de reducción de I_{imp} (%rI_{imp}) y curva polinómica de tendencia (parábola creciente de 2º grado)

La Ec. (8) permite cuantificar técnica y económicamente la reducción porcentual del diámetro de un colector de drenaje en función de la reducción porcentual del grado de impermeabilización de un sector urbano, como consecuencia directa de la implementación de SUDS en el sector en cuestión.

3.7. Análisis del riesgo de inundación

En nuestro caso de estudio, para el cálculo de los caudales de escorrentía se ha adoptado un periodo de retorno (T) de 5 años. Como anteriormente se ha visto, para T=5 años y una duración del aguacero (t) igual a $t_c=45$ minutos, la intensidad de la precipitación es (entrando en la gráfica de la Fig. 3): I = 43 mm/h, y el correspondiente caudal punta: $Q_p=5,4$ m³/s (Tabla 2), para un grado de impermeabilización (I_{imp}) del 90%.

La probabilidad de ocurrencia de esta precipitación de 5 años de periodo de retorno es:

$$P = \frac{1}{T} = \frac{1}{5} = 0,20 = 20\%$$

Es decir, la probabilidad de que en un año cualquiera (dentro de este periodo) se iguale o supere dicha precipitación es del 20%. Por consiguiente, la probabilidad de que la capacidad hidráulica de diseño del colector sea insuficiente al menos una vez un año cualquiera es del 20% o, lo que es lo mismo, el riesgo de inundación por desbordamiento (R) es del 20%.

Analizaremos seguidamente la aplicación al caso de estudio de periodos de retorno de 10 y 25 años, deseable este último de conformidad con la Directiva de Inundaciones (obviamente, la duración del aguacero se mantiene constante e igual al tiempo de concentración: $t = t_c = 45$ minutos, por cuanto t_c es una característica intrínseca de la cuenca).

Para T = 10 años, la intensidad de la precipitación es (entrando en la gráfica de la Fig. 3): I = 54 mm/h. Sustituyendo valores en la Ec. (4), se obtienen los Q_p que se indican en la Tabla 4, para los diferentes grados de impermeabilización del sector (I_{imp}).

I _{imp} (%)	$Q_p (m^3/s)$
90	6,8
81	6,1
72	5,5
63	4,9
54	4,2
45	3,6
36	2,9
27	2,3

Tabla 4. Valores de los caudales punta (Q_p) para T = 10 años y diferentes grados de impermeabilización del sector (I_{imp}) . Fuente: elaboración propia.

Se puede observar en la Tabla 4, que para T = 10 años y un grado de impermeabilización del sector de $I_{imp} = 72\%$, se obtiene, prácticamente, el mismo caudal que en el caso de T = 5 años e $I_{imp} = 90\%$.

La probabilidad de ocurrencia de esta precipitación de 10 años de periodo de retorno es:

$$P = \frac{1}{T} = \frac{1}{10} = 0.10 = 10\%$$

En este caso, el riesgo de inundación por desbordamiento es: R = 10%.

Por su parte, para T = 25 años, la intensidad de la precipitación es (entrando en la gráfica de la Fig. 3): I = 69 mm/h. Sustituyendo valores en la Ec. (4), se obtienen los Q_p que se indican en la Tabla 5, para los diferentes grados de impermeabilización del sector (I_{imp}).

I _{imp} (%)	$Q_p (m^3/s)$
90	8,7
81	7,8
72	7,0
63	6,2
54	5,4
45	4,6
36	3,8
27	2,9

Tabla 5. Valores de los caudales punta (Q_p) para T = 25 años y diferentes grados de impermeabilización del sector (I_{imp}) . Fuente: elaboración propia.

Como se puede observar en la Tabla 5, para T=25 años y un grado de impermeabilización del sector de $I_{imp}=54\%$, se obtiene el mismo caudal que para T=5 años e $I_{imp}=90\%$ y que para T=10 años e $I_{imp}=72\%$.

La probabilidad de ocurrencia de esta precipitación de 25 años de periodo de retorno es:

$$P = \frac{1}{T} = \frac{1}{25} = 0,04 = 4\%$$

Por consiguiente, el riesgo de inundación por desbordamiento es: R = 4%.

En resumen, tal y como muestra la Fig. 5, el aumento del grado de impermeabilización del sector (I_{imp}) provoca un incremento del riesgo de inundación por desbordamiento del colector (R) según una curva polinómica de 2º grado (parábola), cuya ecuación es:

$$R = 0.0062 \cdot (I_{imp})^2 + 0.4444 \cdot (I_{imp}) + 10 \qquad (R^2 = 1)$$
 (8)

O, dicho de otra forma, la disminución del grado de impermeabilización del suelo (Iimp) reduce el riesgo de inundación por desbordamiento del colector (R), según una curva parabólica de 2º grado.

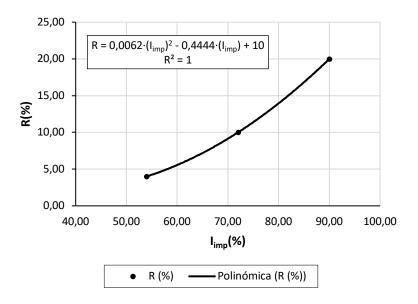


Figura 5. Aumento del riesgo de inundación (R) con el grado de impermeabilización (I_{imp}) de la cuenca (sector urbano): relación polinómica de 2º grado (curva de ajuste parabólica). Fuente: elaboración propia.

4. CONCLUSIONES

Los Sistemas Urbanos de Drenaje Sostenible (SUDS) reducen el grado de impermeabilización del suelo, integrando técnicas tales como pavimentos permeables, cubiertas y fachadas vegetadas, pozos y zanjas de infiltración, jardines de lluvia, etc., que palían los efectos negativos de la urbanización. En el presente trabajo se ha analizado la influencia de la implementación de SUDS en el diseño del colector de drenaje de la escorrentía generada en un sector urbano y en el riesgo de inundación por el desbordamiento del referido colector.

Se ha supuesto el caso de un sector urbano con un elevado grado inicial de impermeabilización (90%) y se han aplicado sucesivas disminuciones porcentuales del mismo, calculándose los correspondientes caudales punta de escorrentía y, con éstos, los diámetros necesarios del colector. Los resultados obtenidos demuestran que las reducciones porcentuales del grado de impermeabilización del suelo implican reducciones porcentuales del diámetro del colector de drenaje según una relación polinómica de 2º grado, con la consiguiente disminución de los costes del mismo.

En cuanto al riesgo de inundación, del análisis efectuado se desprende que la reducción del grado de impermeabilización del sector implica que el riesgo de inundación se reduce también según una curva polinómica de 2º grado, de manera que si se disminuye el grado de impermeabilización del sector de un 20% (del 90 al 72%), se reduce reducir a la mitad el riesgo de inundación (del 20 al 10%), y que si se disminuye el grado de impermeabilización en un 40% (del 90 al 54%), el riesgo de inundación se reduce a la quinta parte (del 20 al 4%).

REFERENCIAS

- Atlanta Regional Commission (2016). *Georgia Stormwater Management Manual*, Vol. 2 (GSMM). Atlanta Regional Commission, Atlanta, GA, USA.
- Centro de Estudios y Experimentación de Obras Públicas (CEDEX) (2007). *Guía Técnica sobre redes de saneamiento y drenaje urbano*.
- Chow, V.T. (1994). *Hidráulica de canales abiertos*. McGraw Hill Interamericana, Santafé de Bogotá, Colombia.
- Construction Industry Research and Information Association (CIRIA) (2015). *The SUDS Manual*, London, UK.
- Ministerio de Fomento (MF) (2016). Orden FOM/298/2016, de 15 de febrero, por la que se aprueba la norma 5.2-IC drenaje superficial de la Instrucción de Carreteras. Boletín Oficial del Estado, 60.
- Perales, S. (2014). Curso de Gestión Integral del agua de lluvia en entornos urbanos: Sistemas de Drenaje Sostenible (SUDS). Instituto Didactia, Almería, España.
- Real Decreto 903/2010, de 9 de julio, de evaluación y gestión de riesgos de inundación, por el que se transpone al ordenamiento jurídico español la Directiva 2007/60 de evaluación y gestión de los riesgos de inundación (Directiva de Inundaciones). Boletín Oficial del Estado, 171.