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Abstract

In this paper, we address the problem of making a mobile/smartphone
camera sensitive to distant fiducial markers. To this end, we carefully de-
sign a novel visual marker that is both dense and readable from large
distances. The main novelty of the proposed marker is the combination
of a quaternary color-based coding system with robust methods for read-
ing the color patterns included in each frame once it is detected. These
patterns include a CRC whose length grows linearly whereas that of the
message grows quadratically. Our experiments show that the proposed
bundle marker-vision algorithm outperforms the alternatives in terms of
distance and angle and also that it is very robust to changes in lighting
conditions, thus making it a good intelligent system for guiding people
with visual impairments in their day to day use of public transportation
systems.

1 Introduction

An artificial visual marker is an element that is intentionally introduced in the
scene and contains information related to the environment (e.g. a description
of the scene, or signposting). Such information is intended to be captured
and recognized by the digital camera integrated in a mobile device (e.g. a
smartphone). Unlike other kind of markers such as barcodes, whose information
is mainly displayed unidimensionally, visual markers display their information
in a bidimensional layout. Attending to their design, there are two families of
visual markers: dense markers and long-range markers.
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Dense visual markers Their layout usually consists of a large number of
visual elements, to enable the potential coding of a large amount of informa-
tion. These codes are readable if (i) we have a sharp image, (ii) the camera is
close enough (about 20 − 50cm) and (iii) we are working under good lighting
conditions. These requirements prevent dense markers from being detected in
certain situations, namely from large distances, while the device is moving (due
to the motion blur effect), or when lighting conditions are not ideal.

In this group, we find several well-known types of markers, such as QR codes
or the Datamatrix system [13]. These codes are usually dichromatic (consisting
of black and white elements), but there are some exceptions such as HCCB (High
Capacity Color Barcodes), a bidimensional color-based marker model developed
by Microsoft [10]. In HCCB, color (leading to multi-chromatic elements) makes
the code denser (a larger amount of putative codes is available). However, the
resulting marker is difficult to read (it must be image centered) and this rules
out intelligent detection.

Long-range visual markers They are designed to improve the detection
process: they can be detected from a large distance (typically within a range of
about 5−7m) and in different lighting conditions. This kind of markers is mainly
applied to Augmented Reality, although they are also used in other context such
as Mobile Robotics. These markers usually store much less information than
the dense ones, because the more information they include, the more complex
is the marker’s geometry, thus affecting the recognition process.

The ARToolkit [7] [6] is the most extended long-range marker and it is
designed for Augmented Reality. It consists of a black frame over a white back-
ground, containing a black and white pattern that encloses the marker. This
allows to detect whether a black frame is a marker or not, but it cannot distin-
guish between different markers. Therefore, ARTs are limited to applications
that use a single marker. This family of markers has evolved to systems that are
able to include information in the markers, such as AprilTags [9] and Aruco [5].
Their marker localization system is that of ART (black frame over white back-
ground) and they basically differ in their encodings. The AprilTags marker, for
instance, uses a grid of 6 × 6 dichromatic cells. These 36 elements represent a
binary code that contains both the message and a code to detect and correct
reading errors, which allows (discarding symmetries and ambiguities) to gener-
ate 500 different codes. On the other hand, Aruco uses a smaller grid (5 × 5).
It applies a variation of Hamming codes that provides 10 bits of information,
allowing to generate 1024 different codes. The rest of the elements in the code
are used to detect and correct errors.

In ChromaTags [3], colored markers are introduced in order to improve de-
tection, providing a fast marker detection algorithm, but the density of these
markers is still low (each cell encodes 1 bit). For instance, 4× 4 (16H5), 5× 5
(25H9) and 6 × 6 (36H11) families of ChromaTags provides 30, 35 and 587
different combinations respectively.

The review of existing visual markers leads us to identify a gap: there is not
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Figure 1: Examples of applications of the visual markers for people with vi-
sual impairments: Product labeling (left) and signposting in an urban context
(right).

an intermediate system which is both dense and readable from large distances.

Motivation From the very beginning our aim has been to increase the density
of the code with a minimal loss or even an improvement of detection. This
is motivated by the need of tagging large environments (metro/ underground
stations, bus-lines and the like reaching the scale of a city). Consequently, we
propose a hybrid (both dense and long-range) visual marker which can be read
by mobile devices designed for the guidance of people with visual impairments.
Current visual marker systems have demonstrated to be very useful, allowing to
provide information about the environment through a device camera, but they
present important limitations in the context of accessibility for people with
visual impairments: (i) dense markers need a proper camera focusing that is
difficult to achieve by a blind person and (ii) long-range markers can only store
a very limited amount of information, while we aim at labelling product prices
in a supermarket, or directions in an airport.

Herein, we propose a novel marker system to reach our goals. Compared
to some tagging/localization solutions, our system is low-cost both for the user
(using smartphone cameras) and for the installer (cheaper than bluetooth bea-
cons and RFID tags). In addition, some localization technologies either do not
give us both our exact localization and orientation (beacons) or they are not ap-
plicable in indoor environments (GPS). Finally, other low-cost tagging solutions
(such as QR and barcodes) do not work at long-range distances.

For this reason, we propose a marker system that combines the advantages
of each family, i.e. the capacity of both storing a sufficient amount of informa-
tion and being detected in a robust and efficient way (with different lighting
conditions, in movement and from a large distance). This kind of markers could
be applied to contexts in which both range and density play a key role (see Fig-
ure 1). We find previous proposals of artificial markers systems aimed at using
mobile devices in the context of visually impaired people assistance. In [2] we
find a kind of marker that is designed exclusively for this context. It is a unique
marker model which does not store information, thus limiting its applications.
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Nevertheless, it has inspired our proposal. In [8] we find a marker system for
people with visual impairments that combines both long-range and dense fea-
tures. In this case, the marker detection could be performed from a long range
but the marker reading must be performed very close to the target, because the
tagged information is given by a dense QR code.

To the best of our knowledge, there are few tests of long-range markers
for people with visual impairments. One of these works [4] was carried by
our colleagues of SKERI (Smith-Kettlewell Eye Research) in San Francisco.
They use Aruco [5] for localization of blind users. This experience reveals the
potential usefulness of the long-range artificial markers in applications for these
community. Consequently, our goal is to provide a user experience close to
long-range systems, but with enough density to cover real life applications.

The rest of the paper is organized as follows. Firstly, in Section 2 we present
the design of the layout of our marker proposal, combining both dense and
long-range properties. Next, the algorithm to detect these markers is detailed
in Section 3 and in Section 4 we show some experimental results from testing
our marker system both in the laboratory and in real environments. Finally, in
Section 5 we draw some conclusions about the obtained results.

2 Marker design

Our marker presents some structural similarities with long-range markers such
as AprilTags [9] and Aruco [5]. In this regard, they share the same localization
method (black frame over a white background), which is widely used within
the family of long-range markers. This frame contains a data grid consisting of
N ×N square cells.

The geometric elements of the proposed marker are shown in Figure 2. The
side length l of each cell determines the width of both black and white location
frames and thus the total area of the marker. The main difference between the
proposed marker and the previous ones is that the data grid consists of 4-state
cells (4 colors) instead of 2-state ones (black and white). Given a grid size
N , our marker model double-exponentiates the density of the code (i.e. given
a code with n elements, our marker yields 4n combinations, instead of the 2n

combinations yielded by a 2-state one). This intrinsic feature does not bound
the resolution of the elements of the marker. On the contrary, we can pack less
(and yet larger) elements in the same area, to make the marker more readable
from a large distance (long-range marker) and still hold a notably high density
with respect to the binary case.

Similarly to binary systems, which assign a color to each state (black=0,
white=1), in our quaternary system each state is represented by four colors. The
choice of these specific colors is open, since the design of the marker includes
the palette in the marker itself. Figure 3 shows different representations of the
same 5× 5 marker.

However, it is convenient to select colors that are distinguishable between
them in order to avoid ambiguities and therefore simplify (and make more ro-
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Figure 2: Layout of the proposed marker: location frames (black over white)
and a data grid of N ×N elements (5 × 5 in this case). Both the square data
grid elements and black and white frames share the same width l. Thus, the
area of the whole marker is (l(N + 4))2.

bust) the recognition process. In this regard, the combination CMYK (Cyan,
Magenta, Yellow, blacK) is recommended, because it corresponds to the most
distant corners in the cube defined by the RGB color space (see Figure 4-left).
Within this space, we also find the combination RGBW (Red, Green, Blue,
White), that presents the same ability to distinguish the different colors. How-
ever, the triplet CMY doubles the luminance of triplet RGB, making the former
one more visible in low-lighting conditions. From now on, CMYK will be used
in all the graphic examples, although our proposal is not limited to this combi-
nation.

The identification of specific colors in a digital image is a classic problem in
the field of Computer Vision, which does not have a definitive solution yet. In

Figure 3: Representations of a single 5× 5 marker with different color palettes:
Cyan/Magenta/Yellow/blacK (left), Red/Green/Blue/blacK (center) and four
gray tones (right).
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Figure 4: Left: RGB color space. CMYK combination contains the four colors
more distant between them and thus more distinguishable. The symmetric com-
bination RGBW presents the same feature, but it is darker. Right: Embedding
the palette P = [p0, p1, p2, p3] in the marker itself. The palette is located in the
corners of the data grid in clockwise order and using as a reference the element
with lowest luminance (black element in CMYK case), that is assigned to p3.
The marker type element S is located in the central cell of the data grid and
determines its size N .

our case, in the process that takes place since the marker is generated until it is
captured by the device camera, its colors may be degraded, making them more
difficult to be recognized. In the printing process (generation) we have to take
into account different factors (e.g. paper type or printer state), that may de-
grade the colors. In the next step (image capture), there are much more factors
that affect the colors (e.g. lighting, camera setup and lens quality). This causes
that, to a greater or a lesser extent, the observed color presents notable differ-
ences with respect to the original one. In our case, we must also consider the
degradation of the marker colors caused by ambient factors over time (humidity,
exposition to sun, oxidation, etc.). For these reasons, the approach consisting
of looking for absolute colors in the image is discarded. Instead, we provide
robustness by including a palette in the marker itself. The palette consists of a
set of four (reference) colors that will be used in the marker P = [p0, p1, p2, p3].
This palette is embedded in the marker itself, in the four corner elements of
the data grid (see Figure 4-right). It is introduced in clockwise order and its
reference (last element p3) is given by the darkest (lowest luminance) element in
the palette. This reference makes the marker invariant to rotation transforms.
The inclusion of the palette solves the problem of the color identification in the
recognition method (it will be detailed in Section 3). Once we obtain a refer-
ence for each color, a proximity criterion may be used to label the cells of the
data grid. Thus, the above-mentioned color degradation problems are avoided,
because the color of each cell is not compared to an ideal color. It is expected
that the palette presents a similar degradation degree than the color cells it is
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Figure 5: Examples of the different supported marker sizes. From left to right:
5 × 5, 7 × 7, 9 × 9, 11 × 11. For the CMYK palette, the central data grid cell
color represents the following sizes: cyan for 5× 5, magenta for 7× 7, yellow for
9× 9 and black for 11× 11.

Figure 6: Elements of the marker: (a) location frames, (b) palette and size, (c)
message and (d) CRC.

compared with.
In addition, the proposed marker is defined for four data grid sizes: N ∈

{5, 7, 9, 11}. We can choose a given size depending on the application we are
aiming the markers to. Reading the marker becomes more difficult as we increase
the marker size (it is more affected by distance, movement and other factors).
We consider that the system loses its long-range capabilities with resolutions
higher than 11×11. This fact motivates the design decision of supporting these
sizes. The color of the central data grid cell encodes the size of this marker.
Note that all the supported sizes are odd, so it always exists a unique central
cell. This central cell may take every color in our palette S ∈ {p0, p1, p2, p3}
(like the others cells in the grid) and these colors correspond to data grid sizes
{5, 7, 9, 11} respectively (see Figure 5).

The remaining cells in the grid are devoted to the message and the Cyclic
Redundancy Check (CRC) [11]. The CRC is computed from the message and it
is included in the marker for later checking. In the recognition step, the message
is extracted, the CRC is computed from the message and it is compared to the
CRC in the marker in order to validate its integrity. This procedure is widely
applied in the field of communications systems.

The CRC code is included in the central row and column (except the central
cell, that is used to encode the marker size). The message is stored in the rest of
free elements (see Figure 6), that is, the ones that are not dedicated to encode
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Table 1: Message length, CRC length and generator polynomial for each marker
size.

N ×N Message Size CRC Size CRC Polynomial

5× 5 24 bit 16 bit CRC-16-CDMA2000
7× 7 64 bit 24 bit CRC-24-Radix-64
9× 9 120 bit 32 bit CRC-32Q
11× 11 192 bit 40 bit CRC-40-GSM

the palette, marker size and CRC. Given that each cell allocates 2 bits (four
values), a N ×N marker contains 2N2 − 4N − 6 bits of data and 4N − 4 bits
of CRC. We can see that the message and CRC length grow quadratically and
linearly respectively. Table 1 shows, for each marker size, the message and CRC
length and the generator polynomial used to compute the CRC. We have used
standard generator polynomials according to each length, whose effectiveness
has been widely proved.

The inclusion of the color in the marker design has a notable impact in the
message density. The Aruco system with 5× 5 markers provides 1024 combina-
tions, AprilTags with 6×6 markers leads to 500 combinations and ChromaTags
with 5×5 markers includes only 35 combinations (given that in this case color is
used to improve marker detection instead of density), whereas the smaller ver-
sion of our proposal (5× 5) is able to store a 24-bit message, that is, 16.777.216
combinations.

3 Marker detection

Once we have detailed the design of the marker layout, in this section we describe
the procedure for detecting this kind of markers within an image.

Given a color digital image I(x, y), which has been captured by the device
camera and a marker size N ∈ {5, 7, 9, 11}, the set of markers T that this image
contains can be obtained as follows.

Marker location The first step consists of locating the marker (or markers, if
there are many of them) in the image. We have seen in Section 2 that the marker
has a black frame over a white background, which is used for this purpose.
This is a pervasive element in long-range markers due to the high contrast
given by black over white. Consequently, in this first step, we apply a frame
detection algorithm to detect a set of candidates. There are many algorithms
that solve this problem (in fact, different long-range marker proposals, such as
ARToolkit [7] [6], AprilTags [9] and Aruco [5], include their own frame location
algorithm). In our case, we recommend the algorithm included in Chilitags
library [1], but any other frame detection method can be a good alternative.
Within the above-mentioned alternative methods, AprilTags stands out for its
robustness, at the expense of its notably higher computational cost.
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Figure 7: Original image (left). Result of the frame detection algorithm (center).
N ×N grid obtained from frame coordinates.

The result of marker location for the image I(x, y) is a set of frames M =
{m0,m1, ...,m(k−1)}. Each frame is defined by four coordinates mi = (c0, c1, c2, c3)
over the image space, that correspond to its outer corners in clockwise order (see
Figure 7-center).

Grid coordinates Each detected frame mi represents a candidate marker.
Taking the frame coordinates mi = (c0, c1, c2, c3) as a reference, a bilinear inter-
polation is applied to obtain a grid Gi(x, y) with N×N equidistant coordinates.
Such a grid consists of the coordinates that correspond to the center of the N×N
data cells in the marker.

Color samples For each coordinate in Gi we obtain the corresponding color
in the image Ci(x, y) = I(Gi(x, y)). Taking into account that Gi is given in real
coordinates and the image in discrete coordinates, such a color is obtained by a
4-neighbors bilinear interpolation.

Orientation detection The matrix Ci contains a reference for the color of
the N×N data cells in the marker, but its orientation is still unknown (the frame
does not contain orientation information). In order to solve this problem, we
have to take into account that the marker corners {Ci(0, 0), Ci(N−1, 0), Ci(N−
1, N − 1), Ci(0, N − 1)} contain the palette in clockwise order, having as a
reference the darkest element in the last position. Therefore, considering the
four possible orientations of Ci, the oriented matrix C∗i is the one in which its
element C∗i (0, N − 1) contains the darkest element (lowest luminance) of the
palette.

Color palette Having the oriented color matrix C∗i , we obtain the color
palette from its corners:
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Algorithm MarkerDetection {
Given an image I(x, y) and a marker size N ∈ {5, 7, 9, 11}
Extract frames M = {m0,m1, ...,m(k−1)} from I(x, y)
For each frame mi ∈M :

Obtain N ×N grid coordinates Gi(x, y) from mi

Obtain N ×N color samples Ci(x, y) = I(Gi(x, y))
Obtain C∗i orienting Ci with its reference corner.
Obtain palette Pi = [p0, p1, p2, p3] from corners of C∗i
Label Ei(x, y) by the nearest neighbor of C∗i (x, y) in Pi

If Ei(bN/2c, bN/2c) = (N − 5)/2 then:
Extract message Sm

i and stored CRC Sc
i from Ei

If CRC from Sm
i matches Sc

i then add Sm
i to T

return T
}

Figure 8: Marker Detection algorithm

Pi = [p0, p1, p2, p3] = [ C∗i (0, 0),
C∗i (N − 1, 0),
C∗i (N − 1, N − 1),
C∗i (0, N − 1)]

(1)

Marker labeling From the color palette, we label the marker cells of C∗i ,
obtaining a marker labeling matrix Ei(x, y), i.e. a matrix in which each element
contains the index in the palette corresponding to the color of this cell. This
labeling is obtained through a nearest neighbor classification approach, i.e. we
assign the index of the palette color closer to the color of the cell:

Ei(x, y) = arg min
k∈{0,1,2,3}

‖C∗i (x, y)− pk‖ (2)

In order to calculate the Euclidean distance ‖.‖ between two colors we rec-
ommend to use the CIE 1976 L*a*b* color space, given that this is an isotropic
color space (unlike alternative color spaces such as RGB).

Validate marker size Once the cells have been labeled, we have to check
whether the marker belongs to the family of markers we are looking for or not,
i.e. we have to check that the size specified in the central cell matches the size
we are looking for: Ei(bN/2c, bN/2c) = (N − 5)/2. Otherwise, the current
frame is discarded (it is not considered as a valid marker) since the coordinates
of the central element will be always correct, even if we find markers with non-
matching sizes.
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Figure 9: Environmental light color experiment. Original setup with a target on
a white wall (top-left) and detection results lighting the scene with 10 different
colors.

Extract information If the marker size is valid, we proceed to extract the
message Sm

i and the CRC Sc
i . In order to obtain Sc

i we take the cells from the
center row and column (except the central cell, which determines the marker
size) and we build a single (4N − 4)-bit number composed with the cell labels
in binary (labels [0, 1, 2, 3] correspond to binary codes [00, 01, 10, 11]) following
the reading order over the matrix (from left to right and top to bottom). The
message Sm

i is composed in the same way, with the cells that do not correspond
neither to the palette, nor the CRC, nor the maker size, thus obtaining a (2N2−
4N − 6)-bit binary code.

Integrity check Finally, we check the integrity of the message, obtaining
the CRC from the message Sm

i by using the proper polynomial (see Table 1)
and comparing it with the stored CRC Sc

i . If both codes match, the message is
considered valid and Sm

i is added to the set of detected markers T in the current
image I(x, y).

In Figure 8 we show an overall scheme of the whole proposed marker detec-
tion method.
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4 Experiments

In this section, we show the strengths and limitations of the proposed method
through a set of selected experiments. First, we introduce the laboratory exper-
iments that will evaluate the key elements of the method and finally we conclude
with testing the implementations in real environments. All the laboratory ex-
periments are performed with the same device, an iPhone SE from 2016 with
a dual-core 1.84GHz processor, with a camera resolution limited to 1280× 720.
We consider that currently this is a middle-range device. With this device and
configuration, the algorithm performs the detection process at 25.7 fps. We
have used 5× 5 tags with the CMYK color palette set.

4.1 Environmental light

Environmental light play a key role on any computer vision algorithm, but in
color-based methods the light frequency is also decisive. In order to evaluate
how the color of the environmental light affects to the detection of our markers,
we have illuminated a target with many different light color sources using a
color LED projector.

In Figure 9 we show the original setup with the target on a white wall (top-
left) and the detection results (marked with green boxes) performed under 10
lights with different frequencies (red, green, blue, orange...). As we can see, the
perception of the marker colors varies heavily with respect to the light frequency.
Nevertheless, the algorithm is be able to detect the marker in all cases. This is
due to the robust labeling step which is performed with respect to the palette.
The palette is part of the scene and consequently it is modified by the light in
the same way than the rest of colors.

In addition, we have evaluated how the intensity of light affects to the marker
detection. In this case, we have performed an experiment with the same setup
than the above one, but varying the intensity of light this time. In Figure 10
we show a plot that summarizes 76 frames lighted with different intensities.
The intensity of light (vertical axis) is measured through the mean luminosity
observed in each frame. The blue part of the plot represents the frames where
the target is detected while the red one represents the frames where the method
fails. As we can see, the algorithm needs a minimum intensity around 7.71% in
order to perform the detection properly. We have included some intermediate
frames in order to show the intensity of light represented by this value.

4.2 Distance and angle

In order to show that our method is a long-range one, we have performed an
experiment in a big hall, where a 20×20 cm marker is placed on a wall (Figure 11
bottom left) and observed from 1578 poses, covering an area of 16× 14 meters.
With the aim of providing a comparison of our marker, we have included a 5×5
Aruco and a low resolution QR below ours with the same size. We have selected
these markers as representatives of long-range and dense families respectively.
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Figure 10: Environmental light intensity experiment. Mean luminosity from
0% to 58% along 76 frames. The target is detected (blue part of the plot) from
7.71% of light.

We ensured that the three markers are visible from each of the 1578 poses.
Nevertheless, the detection of each marker depends on both the angle and the
distance of the observation. In Figure 11 we summarize the results of the ex-
periment. In the top row we plot the poses from where a marker is detected
with our method (left), Aruco (middle) and QR (right). Our method provides
the densest results (474 readings, a 29.99% of the total number of observations),
that are close to Aruco (378 readings, a 23.90% of the total) and really far from
QR (that only obtains 93 readings, a 5.83% of the total). The distributions of
readings show a similar shape: the highest density is concentrated in front of
the marker and it is getting smaller as the distance or the angle increases. The
great difference is in the number of samples and in the size of the distribution,
which is much larger for long-range methods.

In the bottom part of Figure 11 we provide another representation of the
data in order to evaluate the differences between the methods with respect to
the range and to the angle separately. We represent a histogram that shows
the number of detections of each method with respect to the distance (middle
bottom) and with respect to the angle (bottom right). Here we can see the
main difference between long-range and dense methods. On the other hand,
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Figure 11: Distance and angle experiment. Marker observed from 1578 poses
in a 16 × 14m hall, compared with Aruco and QR. Top: 2D distribution of
detections with each method. Bottom (from left to right): experimental setup,
number of detections of each method vs distance and vs angle.

the slight increment in the number of observations of our method with respect
to Aruco is also translated into a slight increment of observation peaks. In
terms of range, Aruco is subject to fluctuations while the observation distance
increases whereas our maker leads to smoother decrease. Considering the angle,
both markers produce few correct readings in extreme conditions, but ours leads
faster than Aruco to a larger number of readings as these conditions improve.

This experiment reveals that our method shows the powerful features of the
long-range family, while it uses a color based coding that exponentiates the
density of the message.

4.3 Adverse conditions for detection

In this section we relate the environmental situations where the detection results
could be compromised given our experience in real-world implementations.There
are some obvious situations that make fail any computer vision based algorithm,
like extreme dark or extreme bright environments, very low quality cameras
and so on. Here we will focus on environmental conditions that specifically
affects to our algorithm and consequently must be taken into account in real
implementations.

As we can see in the previous experiments, our algorithm provides good
detection results under many lighting conditions. This is thanks to the inclusion
of the palette, that offers a reference of each color in the same lighting and
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Figure 12: Two examples of sequences affected by a sparkle with sunlight (top)
and artificial light sources (bottom).

Figure 13: Example of sequence partially affected by a hard shadow.

capturing conditions than the colors of the code. This also prevents the effects
of color degradation, because both palette and code are degraded in the same
way. Therefore, it is possible to find situations where the palette and the code
are in different light conditions in the same frame. This situation occurs when
the tag is partially affected by a sparkle or a hard shadow.

In Figure 12 we show some intermediate frames of two sequences affected by
a sparkle from the sunlight (top) and from an artificial light source (bottom). In
both situations the light produces a sparkle that illuminates the tag heteroge-
neously. These aggressive illumination variance provides non-linear differences
in the palette and the code colors, which causes the recognition to fail when the
sparkle is remarkable (Figure 12 right)

A similar situation could be observed when a tag is partially affected by a
hard shadow. In Figure 13 we show two intermediate frames of a sequence when
one half of the label is covered by a shadow while the other half is illuminated
by the sun. This situation provides hue color differences between the colors in

15



both parts that sometimes causes the recognition to fail (Figure 13 right).
These situations could be attenuated by different ways. Sparkles are more

frequent than partial shadows, and are easily avoided by using matte materials.
On the other hand, partial hard shadows are less frequent. In indoor environ-
ments with artificial light, these shadows are easily avoided because light and
shadows are in fixed positions along the day. Therefore, in outdoor environ-
ments these shadows are more difficult to detect, when the light sources are
continuously changing. In these environments, we must pay more attention to
rigid elements (doors, walls, ...) that project hard shadows, than bushes or trees
that project blurry shadows that are less harmful.

4.4 Implementation in real environments

The marker system that we present in this paper is commercialized with the
name of VisualTags. The system consists of an adapted mobile application
(for Android and iOS) that detects the tags and reads the contents to the user
(Figure 14 top left). The application provides the 3D position of the observed
tags through a language of sound signals. The contents of the tags are obtained
from a remote database which is maintained through a web-based application.

VisualTags was first presented in TifloInnova in November 2017, a key ref-
erence in tiflotechnology (Figure 14 top right). With the help of the organizers
(ONCE, the biggest organization of blind people in Spain) the system was in-
stalled to guide the users through the stands of the fair.

In 2018, VisualTags was first implemented in the public transportation sys-
tem of Barcelona City, Spain (Figure 14 center), in collaboration with TMB
(Transports Metropolitans de Barcelona). The first implementation phase in-
cluded the bus route H12 (396 tags) and the metro stations of the line 9 (833
tags). These tags include useful mobility information such as next arrivals, ad-
vertisements or incidences in the language of the user (the application provides
the information of each tag translated to the language of the device). Along
2018, some seminars are organized in collaboration with TMB and ONCE in
order to show the system to the blind and visually impaired users. In these sem-
inars, we have obtained a very good feedback from the final users, that consider
that the system is very useful in their day to day public transport activities. In
2019, the system was extended to fully cover the bus and metro nets of TMB.

The system is also implemented in all the stations of the streetcar in the city
of Murcia (Spain), in collaboration with TDM (Tramway of Murcia). We have
also deployed VisualTags in the Roman Theater Museum in Cartagena (Spain).

5 Conclusions

In this paper, we have examined the integral path of a fiducial marker for
people with visual impairments: from the careful design (trade-off between long-
range and density) to the implementation (robustness to lighting conditions,
rotation invariance) and the deployment of the marker-reader system in real
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Figure 14: Implementation in real environments. VisualTags (top-left) was first
presented in Tifloinnova’2017 (top-right). Implementations of VisualTags in
the public transport of Barcelona (center), Cartagena Roman Theatre Museum
(bottom-left) and Murcia Tram (bottom-right)

environments (public transportation systems). Consequently, we have provided
the elements of an intelligent system (the bundle marker-mobile/smartphone)
which can sense and interpret visual codes in real contexts, thus having a real
impact in quality of life of people with visual impairments. This is consistent
with out previous developments in the area, such as AOD (Aerial Obstacle
Detection) [12].
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