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Abstract: This work presents recent results derived from the rigorous modelling of holographic
polymer-dispersed liquid crystal (H-PDLC) gratings. More precisely, the diffractive properties of
transmission gratings are the focus of this research. This work extends previous analysis performed by
the authors but includes new features and approaches. More precisely, full 3D numerical modelling
was carried out in all analyses. Each H-PDLC sample was generated randomly by a set of ellipsoid
geometry-based LC droplets. The liquid crystal (LC) director inside each droplet was computed by the
minimisation of the Frank elastic free energy as a function of the applied electric field. The analysis
carried out considered the effects of Frank elastic constants K11, K22 and K33; the anchoring strength
W0; and even the saddle-splay constant K24. The external electric field induced an orientation of the LC
director, modifying the optical anisotropy of the optical media. This effect was analysed using the 3D
split-field finite-difference time-domain (SF-FDTD) method. In order to reduce the computational costs
due to a full 3D tensorial analysis, a highly optimised method for high-performance computing solutions
(HPC) was developed. The influences of the anchoring and voltage on the diffraction efficiencies were
investigated, showing the potential of this approach.

Keywords: H-PDLC; FDTD; diffraction efficiency; LD director distribution; Frank elastic free energy

1. Introduction

Many applications, such as diffraction lenses, optical data storage, image capture devices and
solar cell applications, amongst others, are related to holographic polymer dispersed liquid crystals
(H-PDLCs). The combination of a light-sensitive monomer and liquid crystal (LC) mixture and their
exposition to an interference pattern sets up H-PDLC devices. The highly irradiated zones produce a
lack of monomer due to polymerisation. This effect provokes an increase of the monomer concentration
in the illuminated areas, thereby producing a periodic pattern. The grating is based on a set of small
LC droplets surrounded by a polymer. Many researchers have focused their efforts into improving the
diffraction efficiency or the angular selectivity [1,2] with lower driving voltages [3]. It is also worth
noting novel applications of H-PDLC, e.g., H-PDLC with variable period [4] and H-PDLC gratings used
for autostereoscopic display [5,6], amongst others. In order to achieve these goals, many theoretical
and numerical approaches have been developed, e.g., the application of Montemezzani’s [7] coupled
waves theory for gratings to shaped-droplets [8], models of droplet axis reorientation [9] and the
effective medium theory [10] applied to the analysis of reflective H-PDLC. Kubitskiy et al. [11] have
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contributed significantly to the application of FDTD to H-PDLC. It is worth noting the analysis
performed in [12], wherein the LC director distribution was computed by means of the application
of the Monte-Carlo method, and a two-dimensional FDTD scheme was used for obtaining the light
propagation along the grating. Wang et al. [13] and Gui et al. [14] also contributed to the analysis
of H-PDLC using FDTD method for one-dimensionally periodic structures [13], and H-PDLC with
embedded silver nanoparticles [14], respectively. It is also interesting to mention contributions more
focused on the analysis of the properties of spatial light modulators based on a nematic zero-twist
liquid-crystal (NLC); e.g., [15] computed the LC director by minimising the electric and elastic-free
energies for one-dimensionally periodic structures, [16] analysed crosstalk in liquid spatial light
modulators following a rigorous study of the LC director distribution as well and [17,18] followed
a similar approach, also considering three-dimensional simulations and FDTD numerical method.
The authors applied a two-dimensional split-field (SF) FDTD method to the analysis of ellipsoidal
droplets in H-PDLC gratings with random properties [19]. In this contribution previously mentioned,
the Monte-Carlo method was applied to random ellipsoidal droplets for obtaining the LC director
distribution. Many parameters related to the physical packing of the droplets were considered, e.g., the
density packing, grating period, upper and lower limits of the ellipsoid size and initial LC director
state. The generation of a random particle and its packing is not a straightforward issue. Actually,
granular packing studies are relevant to physicists, biologists and engineers [20,21]. The viscosities
of particle suspensions are affected by the packing fraction [22]. Collisional processes in astronomy
are also analysed numerically by creating a set of fragments with different shapes (cubes, spheres,
etc.) [23]. Here, random ellipsoids were generated and allocated inside the polymerised region of
the H-PDLC. It is worth noting that the packing limit for spheres has been well established at a
density of Ω ≈ 0.64 [21,24]. However, in this work lower limits are considered in order to be closer to
non-homogeneous H-PDLC droplet configurations, thereby triggering light scattering.

In this work, a full tensorial three-dimensional numerical analysis was carried out using the
SF-FDTD method. Maxwell’s curl equations govern the propagation of light waves. FDTD simulations
solve Maxwell’s equations by approximating both time and spatial derivatives by means of central
differences [25,26] in a discrete grid. The FDTD method is a powerful approach since it provides
information of the electromagnetic waves as a function of time and space. SF-FDTD is a specified
version of the standard FDTD method for the analysis of electromagnetic waves with an oblique
angle of incidence along with periodic media. This method has been recently used in many
applications wherein diffractive elements are analysed [26–28]. The analysis of anisotropic media
implies considering the tensorial behaviour of the permittivity tensor ε, and increasing the complexity
of the method and the computational resources as well [27,28]. The finite difference method has
a computational cost that grows exponentially with the grid size. Thus, considering anisotropic
media and 3D full simulations can be demanding for volume gratings or periodic structures with
dimensions larger than the work wavelength. Here, some acceleration strategies have been considered
in order to increase the performance, thereby reducing the running time per simulations, making
this approach competitive. SF-FDTD implementation was completely developed in C++ by the
authors. This complete control on the software has permitted us to include new features such as
parallel computing based on GPUs and CUDA. Interested readers can find more details related to the
implementation of the method in [26–28] and [29–31] regarding the computational acceleration through
parallel and GPU computing. It is worth noting a free implementation of the method (WOLFSIM:
https://sourceforge.net/projects/wolfsim/). The details of this implementation are provided in the
outstanding works of Oh and Escuti [26] and Miskiewicz et al. [28].

In order to simulate H-PDLC structures, some considerations must be clarified. H-PDLC devices
are based on a set of droplets filled with LC material surrounded by a polymer. The polymer is
considered isotropic, so the εii components of the tensor are well known in this case. However,
the refractive index perceived by input light in the different LC droplets depends on the external control
voltage and the induced orientation of the director n inside the LC droplet. Therefore, it is necessary to
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estimate the director’s orientation as a function of the geometry, the LC characteristics and the external
control voltage. The minimisation of the total free energy [16,32] was the formalism chosen for solving
this aspect. The minimisation of the free energy considers the contributions of the deformation, surface
and electric field [30]; i.e., the solution considers the influence of K11, K22, K33, K24 elastic constants,
anchoring strength and external field. The impact of the elastic constants has been widely analysed.
The influence of the saddle splay constant K24 is not usually considered for LC-based devices such
as spatial modulators. However, it has been reported that the K24 term has a direct influence on the
droplet structure, even in the limit of the zero anchoring strength for H-PDLC devices [33,34] when the
surface-to-volume ratio is high [32]. On the other hand, the influence of the K13 parameter has been
neglected in this work since it has been demonstrated that its anchoring strength at the LC interface is
negligible [33]. Once the director’s orientation is obtained, the components of the dielectric tensor of
the LC material are computed easily through the well-known dependence between the LC material
and the dielectric tensor ε via n [16].

The scheme here proposed was applied to an H-PDLC sample with random droplets. After the
sample is defined, the input parameters regarding physical characteristics of the LC, polymer or
external voltage are considered for the minimisation of the free energy. The estimated director
distribution permits to obtain the different components of the permittivity tensor, which is considered
for the numerical FDTD simulation that provides the electromagnetic field in three dimensions.
The analysis carried out includes different anchoring strengths, and different values for the external
field applied. The influences on the diffraction efficiency of these parameters is analysed as a function
of the incidence angle of the input light.

The strategy considered differs significantly from our previous work [19]. Here, three-dimensional
simulations were carried out, which were done to analyse two-dimensionally periodic structures instead
of only one-dimensional periodic structures. Moreover, a rigorous formalism based on the minimisation
of the free energy was used for determining the director distribution of the LC droplets, instead of
considering statistical approaches such as the one considered in [19]. This solution brings about the
opportunity of modelling accurately LC-based devices in a sub-micron regime, taking into account
the physical parameters of the media considered, and the external control voltage or the LC constants,
for instance. The model brings about the possibility of performing an inverse procedure in order to
fit physical parameters while taking into account experimental data, or predicting the behaviour of an
H-PDLC sample before its production. The results herein presented show the potential of the setup since
the scheme provides the diffraction efficiency as a function of the external field amplitude for a different
angle of incidence and anchoring conditions.

2. Physical Model

The analysis carried out in this work was based on three main steps. Firstly, the H-PDLC sample is
generated randomly. In this step, each LC droplet is created with arbitrary characteristics (considering
a set of constraints) and allocated inside the grating following the input parameters provided (period,
thickness, LC refractive indices, etc.). Once the sample is finally generated, the next step is to compute
the LC director for each droplet. Note that the whole sample is spatially discretised; thus, each LC
droplet can be composed of many cells in which an LC director and voltage are defined. After the LC
director is obtained, the permittivity tensor is calculated from the LC director and provided to the
SF-FDTD method for estimating the light propagation along the H-PDLC. In the following subsection,
each phase is detailed in-depth. While it would be natural to start detailing each step from the sample
creation up to the SF-FDTD formulation, the authors consider that it is more appropriate to start
detailing the numerical method, since it presents the key parameters of this work and also helps to
define the problem spatially.
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2.1. Numerical Solution of the Optical Field

The model proposed in here is based on a three-dimensional H-PDLC structure. The H-PDLC
medium is discretised in order to be able to determine the LC director of each cell of the grid. This mesh
is used for solving Maxwell’s equations using the SF-FDTD method. Figure 1 shows the SF-FDTD
scheme considered in this work. In our model, incident light propagates along the ẑ axis forming
an oblique angle of incidence θ with respect to the x̂ axis. Here, linear vertical light along ŷ-axis is
considered. The incidence plane x̂ẑ contains both the wavenumber k of the input light and the normal
to the H-PDLC sample. Periodic boundary conditions (PBC) are applied in both ŷ and x̂ axes. For the
sake of better understanding, an H-PDCL grating with a spatial variation (grating vector) along the x̂
axis is considered. That is to say that the droplets are distributed homogeneously along the ẑ direction.
Indeed, it may initially appear that two-dimensional analysis is carried on, but three-dimensional
information related to the LC director and the anisotropy of the medium is completely incorporated in
our analysis. Perfectly matched layers (PML) are considered at the upper and bottom boundaries in ẑ
axis. PML boundaries are used for avoiding artificial reflections in non periodic boundaries, thereby
simulating propagation in free space along the ẑ axis.

Figure 1. Scheme of the SF-FDTD simulation.

Figure 2 shows different slices of the three-dimensional sample considered. More precisely,
Figure 2 represents the sample and the LC droplet area shown in Figure 1, zoomed in order to be able
to perceive the different LC droplets of the H-PDLC sample generated. This figure shows different
planes in order to illustrate the symmetry of the problem.

SF-FDTD method updates the electromagnetic field as a function of both time and space by
employing a set of new transformed variables [28,35]:

P = Eej(kx x+kyy), (1)

Q = cµ0Hej(kx x+kyy). (2)



Materials 2020, 13, 3725 5 of 14

Figure 2. Representation of the initial random LC director through some slices of the H-PDCLC sample
generated, here the anchoring strength is W0 = 10−5 J/m2 and Φ = 0 V: (a) xz plane. (b) Zoom in of a
region in the xz plane. (c) yz plane. (d) Zoom in of a region in the yz plane.

SF-FDTD considers the propagation of planewaves propagating in the k direction defined as

k = kx x̂ + kyŷ + kz ẑ =
ω

c
(sin θ cos φx̂ + sin θ sin φŷ + cos θẑ) , (3)

where θ is the polar angle from the ẑ axis, and φ is the azimuthal angle from the ŷ axis. c is the speed of
light waves on vacuum and µ0 is the magnetic permeability constant. Note that nonmagnetic materials
are assumed to have the permeability tensor µ unity. An interested reader (in SF-FDTD formulation)
can consult some essential references in the literature such as [35], the contributions of the research
group of Dr. Escuti [26–28] and some interesting works related to the consideration of new addons in
SF-FDTD by Shahmansouri and Rashidian [36]. The authors have also contributed in the development
of this method in some works [29,37,38].
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2.2. Director Distribution of the LC Droplets

For computing the light behaviour in a H-PDLC the orientation of the LC director must be
well defined. LC director is defined as a unit vector pointing into the (average) direction of the
long molecule axis n [16]. For estimating the LC director distribution under the influence of an
electric field E, we follow the approach described in [16,32,33]. The aim of this procedure is to find a
director distribution that minimises the total free energy. Free energy is usually divided in different
contributions, i.e., the homogeneous free energy fO, elastic fe, interfacial fs and field ff. Due to the
fact that this study is focused on the analysis of relatively large droplets, the term fO can be neglected,
since it is just a temperature-dependent parameter [33]. Frank elastic free energy density is related to
the inhomogeneous part of the nematic free energy density fe.

fe(r) =
1
2

K11(·n)2 +
1
2

K22(n · ∇ × n)2 +
1
2

K33(n×∇× n)2 − 1
2

K24∇ · (n(∇ · n) + n×∇× n). (4)

The interaction of the LC with the surrounding medium can be described as

fs(r) = (1− (n · er)
2)

W0

2
δ(r−R), (5)

where er is the preferred anchoring direction on the droplet surface and W0 the anchoring strength [33].
The magnitude of the anchoring strength and its influence on the director n depend on the elastic
constants, for instance. Usually, weak and strong anchoring strengths are considered in their upper
and bottom limits. Weak anchoring can be established near to 10−5 J/m2 (page 165 in [32]), whereas
strong anchoring in the same material can be expected around a few orders of magnitude higher.
However, these two extreme boundary conditions are usually applied considering W0 almost 0 for
weak anchoring and ∞ for strong anchoring. Here, a wide range covering several orders of magnitude
for W0 has been considered in order to identify the transition between different anchoring behaviours.

The vector R in Equation (5) represents the points on the droplet surface. Here, the interaction
with an external field is described by [16]:

ff(r) = −
1
2

εE · E, (6)

E being the electric field inside the LC. The dielectric tensor ε of the LC material is related to the
director n by the following relationship:

εij = ε⊥δij + (ε‖ − ε⊥)ninj, (7)

with ε‖ and ε⊥ being the relative permeability for LC aligned parallel and perpendicular to the electric
field direction. A complete solution of the electric field can be obtained using Maxwell equations at the
same time that the free energy is minimised. The minimisation of the total free energy is performed by
solving the Euler–Lagrange differential equations

− Fi =
∂ f
∂ni
−

3

∑
j=1

∂

∂xj

(
∂ f

∂ni,j

)
= 0 for i ∈ {1, 2, 3}, (8)

where f is the linear contribution of the energies defined previously∫
f dV =

∫
( fO + fe + fs + ff)dV → minimal. (9)

Equation (8) was solved by numerically approximating the derivatives with central finite
differences. The procedure was fully detailed in [16] in Equation (7), where the electrostatic potential
Φ and n were iteratively updated. Note that the electric field E is related to the potential Φ through the
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Gauss’s law. The coupled non linear partial differential equations were solved numerically on a grid
that includes the LC droplets and the polymer altogether. A was mentioned in the previous section,
periodic boundary conditions were applied in x̂ and ŷ axis, whereas along ẑ axis, the given voltages
applied on the electrodes of the H-PDLC sample constrained the electric potential. As a starting guess,
the potential was defined as a linear ramp along ẑ between the electrodes, and for n the LC distribution
was initially totally random. More specifically, for each droplet er was defined parallel to its larger
semi-major axis, which is arbitrary as well. This condition is fulfilled on the surface of each droplet
that is randomly placed and oriented inside the H-PDLC. The LC director inside each droplet, which
is surrounded by the surface previously defined, is totally random, and initially, does not receive any
influence from the droplet surface. However, depending on the anchoring strength, the LC director
inside the droplet will be oriented, taking into consideration the surface constraints.

2.3. Random H-PDLC Sample Created by Packing Ellipsoids

The packing algorithm tries iteratively to fit new droplets of 40–100 nm size inside the grating [12].
A user can modify the length of the polymerised area. For us, a grating with the 50% of the period
polymerised was considered. The surface of each droplet is identified and labelled in order to be
designed with a preferred direction of the LC director (er). This unit vector is parallel to the largest
semi-major axis of the ellipsoid. This direction is entirely arbitrary since the size of the three-axis of
the ellipsoid, and its rotation are also arbitrary. This process is performed iteratively till the desired
packing density is fulfilled. Note that this process can be very long and time-consuming, since the
higher the packing density, the lower the chance of finding a proper spot for new LC droplets. Once the
sample is completed, a spatial grid with LC droplets is defined. The grid identifies the position of
each LC droplet and the surface of them as well. The parameters used for the simulations are given
in Table 1. LC properties were extracted from [16] and the value of K24 was considered closer to
K11 = K22 = K33 following the results given in [33]. The source was 633 nm polarized at 90◦ light.
The incidence angle θ was varied between −30◦ and 30◦, whereas φ = 0◦ in all cases.

Table 1. Parameter values used for numerical simulations.

Parameter Description Symbol Value

Frank-Oseen elastic coefficients K11, K22, K33, K24 6.82 pN, 3.9 pN, 5.74 pN, 4.00 pN
refractive indices LC ne, nO 1.84, 1.54

refractive index of the polymer npol 1.53
relative dielectric permittivity ε‖, ε⊥ 14, 8.5

thickness of the grating d 8 µm
cell size ∆x = ∆y = ∆z 12.67 nm

maximum voltage Φmax 200 V
Wavelength λ0 633 nm
Time step 1 ∆t s∆x/c ≈ 2.11 · 10−17s

It is worth noting that the time resolution depends on the Courant stability factor [25], which is also influenced
by the angle of incidence. The value provided in Table 1 is for normal incidence (θ0 = 0◦).

The grid size for the H-PDLC structure was composed of an arrangement of 640 × 80 × 80
cells along the ẑ, x̂ and ŷ axes, respectively. Figure 2 shows some slices of the LC director for the
three-dimensional domain simulated. The configuration shown in Figure 2 represents the initial state
for the different procedures detailed previously, i.e., minimisation of the total free energy, and numerical
simulation of the optical fields.

3. Results

Figure 3 shows the diffraction efficiency η as a function of the incidence angle θ0 for different
external control voltages (Φ). It can be seen how the diffraction efficiency for ± 1st orders is
dramatically reduced as the voltage is increased. For the highest voltage, the LC director is aligned
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towards the normal layer direction, thereby producing a matching between the LC ordinary refractive
index and the one of the polymer. In this extreme situation (Φ = 200 V), the grating almost disappears,
and a homogeneous dielectric layer is perceived by input light. It is worth noting that the magnitude
of the external voltage is usually very high in PDLC structures [32]. Some differences between the
±1st-orders can be produced by the normalisation (|n| = 1) of the LC director during the time relaxation
procedure. This normalisation can produce a preferred orientation of the LC director, inducing a small
asymmetry of the grating.

Figure 3. Diffraction efficiency for the orders ± 1st and 0th as a function of the angle of incidence θ0

(a) Φ = 0 V. (b) Φ = 5 V. (c) Φ = 100 V. (d) Φ = 200 V.

In order to demonstrate the potential of this approach, the electric field for the three spatial
components is represented in Figure 4 in the Bragg’s angle (18.8◦). In all cases the input light is linear
vertical polarisation (Ey) with an oblique angle of incidence. Since for the input voltage Φ = 0 V
the grating is present, and the Bragg condition is achieved, the mixture of the 0th and 1st order can
be identified in transmission (see Figure 4b). Due to the inner anisotropy of the LC some light is
transferred into the x̂ and ẑ components, detailed in Figure 4a,c. Figure 4d–f represents the same set
of fields, but in this case for the maximum control voltage Φ=200 V. Here, the spatial variation of the
refractive index is very small; thus, the input light remains almost intact. Note that the amplitudes
of the x̂ (Figure 4d) and ẑ (Figure 4f) light contributions are up to 10 times lower compared to the
amplitudes shown in Figure 4a,c, respectively. It is interesting to clarify that all FDTD simulations
were configured in order to ensure the steady-state performing more than 15,000 time-steps. This
setup provides the behaviour of the light after being inside the grating for more than 30 ps. This time
interval can be reduced slightly for an oblique angle of incidence due to the Courant condition that
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ensures FDTD stability. However, the authors have corroborated empirically that the steady-state has
been reached in all situations.

Figure 4. Representation of the xz plane slice of <{Ei}, with i = x, y and z. In all cases y = 0.49 µm
and W0 = 10−5 J/m2. (a), (b) and (c) show the x, y and z components of the electrical field for
Φ = 0 V, respectively. (d), (e) and (f) show the x, y and z components of the electrical field for
Φ = 200 V, respectively.

Figure 5 shows the variation of the -1st-order (Figure 5a,d,g), 0th-order (Figure 5b,e,h) and
1st-order (Figure 5c,f,i). The diffraction efficiency is represented as a function of the external voltage
for normal incidence and Bragg angles ± 18.8◦. The influence of the anchoring strength was also
analysed by varying this parameter for each row of graphs. Actually, the first row of graphs shows
the results for a weak anchoring situation (W0 = 10−5 J/m2). The anchoring is increased in each row,
from up to bottom in Figure 5. It can be seen how the impact of the anchoring strength becomes
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evident for W0 ≈ 104 J/m2 approximately. The higher the anchoring strength is, the lower the effect
of higher control voltages is on the grating, thereby maintaining higher diffraction efficiencies even
for the highest control voltage considered. These results demonstrate the necessity of applying huge
voltages in H-PDLC devices, since it is well known that the surface and anchoring effects on the
droplets are quite high [32]. For providing more evidence of this behaviour, some LC distributions
as a function of the anchoring and the external control voltages are summarised in Figure 6. More
specifically, the LC director for different anchoring strengths is shown in column order, whereas the
voltage is increased for each row of graphs. The LC distribution for Figure 6a,d,g,j, with W0 = 10−5

J/m2, shows clearly how the LC director of the droplets gets oriented parallel to the ẑ-axis reasonably
well even for Φ = 132.2 V. Some differences can be identified in the surface area in the bottom droplets
shown in Figure 6g that are totally aligned in Figure 6j. It is interesting to address that the LC director
is almost not voltage influenced in the lower-mid voltage range since the parts of Figure 6a,d are
very similar.

Figure 5. Diffraction efficiencies of ±1st-order and zeroth-order as a function of the control voltage
with anchoring strength W0 = 10−5 J/m2 and different incidence angles:(a) -1st-order, W0 = 10−5 J/m2.
(b) 0th-order, W0 = 10−5 J/m2. (c) 1st-order, W0 = 10−5 J/m2. (d) -1st-order, W0= 104 J/m2. (e) 0th-order,
W0 = 104 J/m2. (f) 1st-order, W0 = 104 J/m2.(g) -1st-order, W0 = 106 J/m2. (h) 0th-order, W0 = 106 J/m2.
(i) 1st-order, W0 = 106 J/m2.
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Figure 6. LC director representation for the x̂ẑ plane at y = 0.49 µm. (a) Φ = 0 V and W0 = 10−5 J/m2.
(b) Φ = 0 V and W0 = 104 J/m2. (c) Φ = 0 V and W0 = 106 J/m2. (d) Φ = 64.4 V and W0 = 10−5 J/m2. (e)
Φ = 64.4 V and W0 = 104 J/m2. (f) Φ = 64.4 V and W0 = 106 J/m2. (g) Φ = 132.2 V and W0 = 10−5 J/m2.
(h) Φ = 132.2 V and W0 = 104 J/m2. (i) Φ = 132.2 V and W0 = 106 J/m2. (j) Φ = 200 V and W0 = 10−5

J/m2. (k) Φ = 200 V and W0 = 104 J/m2. (l) Φ = 200 V and W0 = 106 J/m2..

Figure 6b,e,h,k covers the LC director distribution for W0 = 104 J/m2. For mid-range voltages (2nd
and 3rd rows of graphs) the differences are noticeable, since the anchoring was increased, and the LC
director, on boundaries, tended to be more static, even for high voltages. However, Figure 6h,k shows
that the increase of the control voltage is enough for forcing the alignment of the LC director. Finally,
Figure 6c,f,i,l covers the strong anchoring case (W0 = 106 J/m2). If Figure 6c,f is compared with those
related to weaker anchoring, it can be seen how the surface boundaries influence in a great manner the
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arrangement of the LC director in the low–mid range of the external voltage. Figure 6l covers the case
for both the highest control voltage and strongest anchoring. Here, some differences can be seen in the
droplet allocated in the centre of this graph and some in the bottom. The LC director allocated inside
these droplets shows a good vertical alignment induced by the influence of external voltage. However,
the strong anchoring forces boundaries to remain almost intact compared to Figure 6c,f,i.

4. Conclusions

This work shows the results derived from a rigorous numerical analysis of H-PDLC. H-PDLC
was created with random ellipsoid LC droplets between 40 and 100 nm size surrounded by a polymer.
The whole sample was spatially discretised at a nanometre scale. The LC director inside the LC droplet
was estimated by minimising the free total elastic energy in three dimensions. This minimisation
deals with the final LC director distribution, and hence with the permittivity tensor as the input of
the three-dimensional split-field FDTD scheme. The analysis covered the anchoring strength and the
external control voltage applied to the H-PDLC. The diffraction efficiency of an H-PDLC was analysed
as a function of the anchoring and the voltage for oblique angle of incidence. The results are consistent
and show the potential of this scheme to analyse the behaviour of LC-based devices accurately.
The analysis of the influence of both anchoring strength and external control voltage corroborated
that the anchoring strength dominates the LC orientation of the droplets in the low–mid range of
the external control voltage. For weak anchoring, the LC director was aligned towards the normal
direction easily compared to the strongest anchoring scenario. In this specific case, the simulation
demonstrated that the surface anchoring in LC droplets influences in a great manner the LC orientation
of the whole H-PDLC structure.

It is worth noting that with this approach, not only can direct parameters from the electromagnetic
field be obtained, but polarisation information and diffraction efficiencies, amongst others, can also be
indirectly computed from the raw SF-FDTD output in a single simulation.

The authors are currently working on considering additional terms in the minimisation of the
total free energy, such as the K13. Applying this setup with some approximations and machine learning
techniques could transform this scheme into a powerful method for characterisation of H-PDLC
samples through the inverse analysis of experimental diffraction efficiency curves.
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