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Abstract 

Aims 

Biodiversity is often positively related to the capacity of an ecosystem to provide multiple 

functions simultaneously (i.e., multifunctionality). However, there is some controversy over 

whether biodiversity-multifunctionality relationships depend on the number of functions 

considered. Particularly, investigators have documented contrasting findings that the effects 

of biodiversity on ecosystem multifunctionality do not change or increase with the number of 

ecosystem functions. Here, we provide some clarity on this issue by examining the statistical 

underpinnings of different multifunctionality metrics. 

Methods 

We used simulations and data from a variety of empirical studies conducted across spatial 

scales (from local to global) and biomes (temperate and alpine grasslands, forests and 

drylands). We revisited three methods to quantify multifunctionality including the averaging 

approach, summing approach and threshold-based approach. 

Important findings 

Biodiversity-multifunctionality relationships either did not change or increased as more 

functions were considered. These results were best explained by the statistical underpinnings 

of the averaging and summing multifunctionality metrics. Specifically, by averaging the 

individual ecosystem functions, the biodiversity-multifunctionality relationships equal the 

population mean of biodiversity-single function relationships, and thus will not change with 

the number of functions. Likewise, by summing the individual ecosystem functions, the 

strength of biodiversity-multifunctionality relationships increases as the number of functions 

increased. We proposed a scaling standardization method by converting the averaging or 
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summing metrics into a scaling metric, which would make comparisons among different 

biodiversity studies. In addition, we showed that the range-relevant standardization can be 

applied to the threshold-based approach by solving for the mathematical artefact of the 

approach (i.e., the effects of biodiversity may artificially increase with the number of 

functions considered). Our study highlights different approaches yield different results and 

that it is essential to develop an understanding of the statistical underpinnings of different 

approaches. The standardization methods provide a prospective way of comparing 

biodiversity-multifunctionality relationships across studies. 

Keywords: Averaging approach, Biodiversity, Ecosystem multifunctionality, Multiple 

threshold approach, Plant species richness, Spatial scale  
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“The challenge remains to develop multifunctionality indices that appropriately account for 

the aggregate effects of contrasting individual functions when their responses depend on 

multiple drivers that vary in their effects either in space or time.” – Bradford et al. (2014a) 
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INTRODUCTION 

Over the past decade, a key question in ecology has been whether biodiversity increases the 

capacity of an ecosystem to provide multiple functions simultaneously (i.e., 

multifunctionality) (Gamfeldt et al., 2008, Hector et al., 2007, Hines, 2019, Manning et al., 

2018). In general, as biodiversity increases, so does at least one ecosystem function − 

typically aboveground net primary productivity (ANPP), e.g., Hector et al.(1999), Hooper et 

al. (2012), Tilman et al. (2014). However, an ecosystem performs a variety of functions in 

addition to ANPP, and indeed there is an emerging body of research that seeks to estimate 

multifunctionality and to understand how biodiversity influences multifunctionality (Byrnes 

et al., 2014b, Gotelli et al., 2011, Maestre et al., 2012, Manning, et al., 2018, Zavaleta et al., 

2010). While many biodiversity-multifunctionality studies provide evidence that increasing 

biodiversity leads to higher multifunctionality (Fanin et al., 2018, Hautier et al., 2018, 

Lefcheck et al., 2015a), such biodiversity effects become increasingly complex in naturally 

assembled communities (Snelgrove et al., 2014, van der Plas, 2019). This pattern likely 

emerges because the mechanisms underlying biodiversity-multifunctionality relationships are 

not well understood when the number of functions considered increases (Fanin, et al., 2018, 

Gamfeldt et al., 2017, van der Plas et al., 2016). For example, trade-offs among ecosystem 

functions could accumulate with the number of functions (Butterfield et al., 2016, Byrnes et 

al., 2014a, Dooley, 2018, Lefcheck, et al., 2015a, Meyer et al., 2018), thereby offsetting the 

effects of biodiversity on multifunctionality (Byrnes, et al., 2014b, Zavaleta, et al., 2010). 

Alternatively, the rate of  multifunctionality loss as biodiversity is lost may increase because 

the levels of redundancy across ecosystem functions become lower when more functions are 

considered (Delgado-Baquerizo et al., 2016a, Gamfeldt, et al., 2008, Miki et al., 2014, Mori 

et al., 2016). 
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Currently, there are at least four ways to estimate multifunctionality (Byrnes, et al., 2014b, 

Dooley et al., 2015, Hölting et al., 2019, Manning, et al., 2018): the single functions 

approach, averaging approach, turnover approach and threshold-based approach (single vs. 

multiple thresholds) (see summaries by Byrnes, et al., 2014b, Dooley, et al., 2015). 

Investigators might use the single functions approach if they desire to evaluate whether high 

diversity communities maintain more individual functions with higher values than do less 

diverse communities (Duffy et al., 2003). The averaging approach might be used if 

researchers want to compare the average effect of diversity on multiple ecosystem functions 

(Hooper et al., 1998, Maestre, et al., 2012). The turnover approach might be used if the goal 

is to assess whether different species contribute different ecosystem functions or services 

(Hautier, et al., 2018, Hector and Bagchi, 2007, Isbell et al., 2011, Wagg et al., 2019). And 

finally, the threshold-based approach might be used if the aim is to compare whether a 

community can simultaneously achieve high levels of multifunctionality for a given threshold 

or multiple thresholds (Byrnes, et al., 2014b, Gamfeldt, et al., 2008, Zavaleta, et al., 2010). 

Although these four approaches provide useful information about biodiversity-

multifunctionality relationships, multifunctionality is not just a quantitative metric. Indeed, it 

is also applied to quantify the overall performance of ecosystem quality, i.e., the extent to 

which an ecosystem has desirable properties from the viewpoint of human society (Allan et 

al., 2015, Manning, et al., 2018, Slade et al., 2017, Song et al., 2020). The problem with 

multiple metrics/valuations of multifunctionality is that it hinders synthesis across studies or 

comparing effects of particular sub-components of ecosystems (Byrnes, et al., 2014b). 

Many studies have demonstrated that the positive contribution of species to 

multifunctionality increases with the number of functions (e.g.,Hautier, et al., 2018, Hector 

and Bagchi, 2007, Isbell, et al., 2011, Meyer, et al., 2018). Recently, three studies have 

explored whether biodiversity-multifunctionality relationships are contingent on the number 

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/advance-article-abstract/doi/10.1093/jpe/rtaa031/5856177 by U

niversidad de Alicante user on 18 June 2020



Acc
ep

ted
 M

an
us

cri
pt

7 
 

of functions considered. Using simulation models, Gamfeldt and Roger (2017) found that 

increasing the number of functions did not change biodiversity-multifunctionality 

relationships. That is, the effects of biodiversity on multifunctionality are approximately 

identical to the average effects of biodiversity on individual ecosystem functions. The results 

were supported by an empirical study examining biodiversity-multifunctionality relationships 

on Swedish islands (Fanin, et al., 2018). However, a study conducted in a German grassland 

found different trends (Meyer, et al., 2018). Specifically, as more functions were included in 

the estimate of multifunctionality, biodiversity-multifunctionality relationships became 

increasingly positive. These contrasting findings, obtained using different modelling and 

experimental approaches in different study ecosystems, highlight the need for additional and 

more detailed analyses of how the number of functions influences biodiversity-

multifunctionality relationships. 

Here we use simulation models and empirical data to show that the statistical underpinnings 

of quantitative multifunctionality metrics are important for understanding whether increasing 

the number of functions will alter biodiversity-multifunctionality relationships. We first re-

examine and expand the simulation models adopted by Gamfeldt and Roger (2017) by 

combining the averaging and summing multifunctionality metrics together. We then propose 

a way to convert the two metrics into a scaling one, which makes multifunctionality 

comparable among studies. We also revisit the threshold-based approach to quantify 

multifunctionality (Byrnes, et al., 2014b) and use the range-relevant standardization to deal 

with the mathematical artefact raised by Gamfeldt and Roger (2017). Finally, we compare 

biodiversity-multifunctionality relationships with the standardization methods using 

empirical studies from a number of ecosystems with an extensive range of climatic and 

edaphic conditions (Figure S1). 
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METHODS 

A review of the averaging and summing approaches 

Several quantitative approaches have been developed to examine biodiversity-

multifunctionality relationships (Byrnes, et al., 2014b, Dooley, et al., 2015, Manning, et al., 

2018). Here, we reviewed two approaches. The averaging multifunctionality metric is one of 

the early and most commonly used approaches (Byrnes, et al., 2014b, Hooper and Vitousek, 

1998, Maestre, et al., 2012, Mouillot et al., 2011). A more recently developed approach is the 

summing multifunctionality metric (Meyer, et al., 2018). Note that there are many versions of 

averaging indices that account for the standard deviation or geometric means of multiple 

single functions at the same time (see Table S1 for more information). For simplicity, we 

identify the two methods as the averaging approach and the summing approach.  

The averaging or summing metric usually regresses with biodiversity, and the regression 

slopes are referred to as the effects of biodiversity on multifunctionality (Gamfeldt and 

Roger, 2017). One advantage of the averaging and summing approaches is that they are easy 

to calculate and interpret. Particularly, biodiversity-multifunctionality relationships can be 

analyzed using general linear models (Byrnes, et al., 2014b, Gamfeldt and Roger, 2017, 

Maestre, et al., 2012). However, the averaging approach has been criticized for a variety of 

statistical and biological reasons (Byrnes, et al., 2014a, Dooley, 2018, Hines, 2019). For 

instance, the averaging metric has the same value when two functions have an identical value 

or when one function makes a higher contribution and another one makes a lower 

contribution (for example, the average of 5 and 5 is 5; the average of 1 and 9 is also 5) 

(Byrnes, et al., 2014b, Dooley, 2018). In addition, although this limitation is equally true for 

the summing metric, we acknowledge that only one study focuses on the summing approach 

as it applies to the study of biodiversity-multifunctionality relationships (Meyer, et al., 2018). 
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Simply put, this method has not been well explored, but we expect others will not adopt it 

without considering some of its limitations, such as weighting functions equally (but see 

Allan, et al., 2015, Manning, et al., 2018).  

We explore the statistical underpinnings of the averaging and summing metrics using both 

simulation models and empirical data. We first note that the raw slope estimates (regression 

coefficients) do not help compare the strength of biodiversity effects when using these two 

multifunctionality metrics (Supplementary Note 1). In addition, we note that the averaging 

metric is mathematically equivalent to the summing metric if we standardize these two 

metrics to a common scale (e.g., centering and scaling the two metrics into the scaling 

multifunctionality metric) (Figure 1; Supplementary Note 2). Most importantly, the values of 

the averaging and summing metrics are generally expressed in a relative scale. Therefore, we 

propose to use the scaling multifunctionality metric for data syntheses. Note that the scaling 

metric is not designed to solve the question of why biodiversity-multifunctionality 

relationships change with the number of functions considered. But this metric allows us to 

estimate the standardized slopes (or coefficients) of the general linear models between 

biodiversity and multifunctionality. As a result, the scaling approach could be used to 

compare results of different studies in a systematic way. Notably, there is a long history of 

using standardized coefficients in multiple regressions and structural equation models (Grace 

et al., 2005, Grace et al., 2018). Some of the commonly used standardization methods include 

Z-score and range-relevant standardization (Grace et al., 2007, Grace and Bollen, 2005, 

Grace, et al., 2018, Schielzeth, 2010). Here, we suggest a new approach – referred to as 

“scaling approach” – to convert the averaging or summing metrics into a single metric. In 

contrast to the traditional way, we use a Z-score transformation and then model the metric 

with the raw biodiversity data. Suppose that the estimated slope between the scaling metric 

and the raw biodiversity data is 0.2. We interpret this value to mean that, with each addition 
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of one unit of biodiversity (i.e., an increase of one species), then multifunctionality increases 

by 0.2 standard deviations. Therefore, the semi-standardized slope estimate may provide an 

opportunity to make the multifunctionality metric comparable and interpretable across 

studies. Below we use simulation models to illustrate how different methods will affect our 

interpretation and comparison. 

Simulation models for the averaging, summing and scaling approaches 

To our knowledge, Gamfeldt and Roger (2017) were the first to quantitatively and explicitly 

address whether biodiversity-multifunctionality relationships depend on the number of 

functions. Here, in contrast with their methods, we used three metrics (averaging, summing 

and scaling) to quantify multifunctionality. Note the summing metric is not the same as the 

one proposed by Meyer et al. (2018). They calculated a metric by summing the axis scores of 

the principal component analysis (PCA). Their metric has the advantage that it corrects for 

the correlations among individual ecosystem functions by calculating the components of PCA 

which are, by definition, uncorrelated with each other. In this study, we calculated the 

summing metric directly by summing individual standardized ecosystem functions without 

correcting for the correlation structure of ecosystem functions. The summing metric thus 

enables us to make direct comparisons with the averaging metric. In addition, the scaling 

metric is a modified metric that can be calculated either from the averaging or summing 

metrics (Figure 1). It is very similar but not exactly the same as Dooley’s scaled average 

multifunctionality (SAM) metric (Dooley, 2018). However, the rationale for our metric is 

similar to SAM in that it converts the averaging or summing metric into a standardized one 

with a common scale (more information about the statistical rationales can be found in 

Supplementary Notes 1 and 2). 
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In brief, we simulated a species pool with 12 species, and each species performs nine 

ecosystem functions. Artificial communities were generated from the species pool. We 

simulated all possible combinations for the 12 species at each species richness level and 

generated a total of 4095 artificial communities at each step. We calculated ecosystem 

functions by averaging the function values that the species performed in the 4095 artificial 

communities. Meanwhile, we simulated a series of ecosystem functions subject to 

complementarity, which is one of the fundamental mechanisms to explain the observed 

positive effects of biodiversity on ecosystem functioning. We applied a saturating function 

for species richness and the complementarity factor (CF) to an ecosystem function in the 

following way: 

CF = CF
max

1- e1-S
r

1-
1

CF
max

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷                (Eqn. 1) 

where CF is one when species richness is one, and the maximum CF (CFmax) is three. S is 

species richness and r is the rate of CF reaching its maximum value (CFmax). Each single 

function was standardized either with Z-score or its maximum value. In total, we simulated 

nine scenarios and generated various sets of functions that varied by the number functions 

subject to complementarity. All possible combinations of the nine single ecosystem functions 

were used to calculate the averaging, summing or scaling multifunctionality metrics in each 

scenario. We refer to Gamfeldt and Roger (2017) for more details of the simulations. 
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A review of the threshold-based approach 

A second common approach to quantify multifunctionality is the threshold-based approach 

(Byrnes, et al., 2014b, Gamfeldt, et al., 2008, Zavaleta, et al., 2010). Generally, it converts 

the matrix of ecosystem functions (n communities by m functions) into a binary matrix for a 

given threshold (or cut-off) and counts the number of functions that surpass a given threshold 

in a community. This process is very similar to the method used to calculate species richness 

in a community where species abundance is converted into a binary species table (presence 

and absence matrix) and the number of species in the community is counted. Next, the 

number of counted functions is fitted to a generalized linear model against biodiversity, and 

the slope of this linear model is referred as the effects of biodiversity on multifunctionality. 

The advantage of the threshold-based approach is that it can identify whether two functions 

reach to high levels of functionality at the same time. However, the biological interpretation 

for the threshold-based approach remains challenging (Gamfeldt and Roger, 2017). In 

addition, the threshold-based approach is sensitive to the thresholds used to count the number 

of functions and the methods used to standardize single ecosystem function (Byrnes, et al., 

2014b, Gamfeldt and Roger, 2017). Most importantly, Gamfeldt and Roger (2017) pointed 

out that both positive and negative effects of biodiversity on multifunctionality change with 

the number of functions, and that this pattern is likely due to a mathematical artefact 

(Supplementary Note 3). Therefore, the threshold-based approach may inhibit reliable 

comparisons across studies. 

As we discuss above, the range-relevant standardization (Grace and Bollen, 2005, Grace, et 

al., 2018) may solve the mathematical issue and make the estimated slopes comparable 

across studies. Generally, the range of the number of functions surpassing a given threshold 

varies from zero to the total number of functions measured. Thus, if we standardize the 
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number of functions surpassing a given threshold, we will obtain a series of standardized 

values ranging from zero to one. The slope estimates between the standardized number of 

functions and biodiversity should be comparable to a common scale.  

To support our speculation, we used soil microbial biomass from a pool of 82 ecosystem 

function indictors measured in an empirical study at the Jena biodiversity experiment (Meyer, 

et al., 2018, Weisser et al., 2017). Similar to Gamfeldt and Roger (2017), we simulated a 

variety of scenarios by replicating soil microbial biomass many times (i.e., 5, 15, 25, 35 and 

45 number of functions in total considered). Note that the simulations focused on a single 

ecosystem function, but we treated the replications of microbial biomass as multiple 

ecosystem functions. Such scenarios are not ecologically relevant in a real study of 

biodiversity-multifunctionality relationships, but they illustrate the rationale and the cause of 

the mathematical artefact of the threshold-based approach. In addition, we used a hierarchical 

sampling approach, by which we randomly sampled a subset of the 82 functions from the 

Jena dataset (Supplementary Note 3). The hierarchical sampling approach enabled us to 

explore whether biodiversity-multifunctionality relationships changed when novel functions 

are included in estimate of multifunctionality. 

Empirical data acquisition and description 

We compiled five empirical datasets including two manipulative biodiversity experiments 

across nine grasslands and three observational studies spanning 300 sites around the world 

(Figure S1; Table S2). The two manipulative biodiversity studies include one grassland 

biodiversity experiment that measured 82 ecosystem functions (Jena grassland) (Meyer, et 

al., 2018, Weisser, et al., 2017) and eight pan-European BIODEPTH grassland biodiversity 

experiments that measured six functions (Spehn et al., 2005). The three observational studies 

include 208 forest plots of the FunDivEUROPE platform with 26 measured functions in each 
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single plot (Ratcliffe et al., 2017), 236 global drylands with 14 measured functions (Maestre, 

et al., 2012, Ochoa-Hueso et al., 2018) and 60 Tibetan grasslands with eight measured 

functions (Jing et al., 2015). These five studies span local, regional and global spatial scales 

with diverse climates, vegetation and soil types. The ecosystem functions compiled from each 

study represent typically measured functions in terrestrial ecosystems (e.g., primary 

productivity, nitrogen and phosphorus pools in plants and soils, soil microbial biomass and 

enzymatic activities). All the surrogates of ecosystem functions used are either direct 

measures of ecosystem stocks (e.g., plant biomass, soil C stock), fluxes (e.g., productivity, 

decomposition) or indirect measures of ecosystem properties (e.g., light interception) (Meyer, 

et al., 2018). We focused on plant species richness because this was the only biodiversity 

metric common to all datasets. 

Statistical analyses  

To make our simulations comparable to Gamfeldt and Roger (2017) and to estimate 

biodiversity effects on multifunctionality, we used two data transformations – standardized to 

maximum value and Z-score – for the single ecosystem functions prior to the estimate of 

multifunctionality. For the observational studies and biodiversity experiments, we used 

general linear models without controlling for other abiotic variables (e.g., climate, land use 

intensity, and soil properties). Although these abiotic variables may affect the strength of 

biodiversity-multifunctionality relationships (Duffy et al., 2017), they will not affect our 

interpretation of the effects of biodiversity on multifunctionality. 

To estimate the average effect of biodiversity on multifunctionality, we fitted linear 

regression models with all combinations of functions from one to the maximum number of 

functions considered within each simulation or empirical dataset; thus our method combined 

two multifunctionality approaches, the single functions approach (Byrnes, et al., 2014b) and 
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the multifunctionality metric approach. For three datasets – Jena grassland, European forests 

and Global drylands (Maestre, et al., 2012, Meyer, et al., 2018, Ratcliffe, et al., 2017) – if the 

ecosystem function combinations were greater than 500, we randomly sampled 500 

combinations of functions and calculated multifunctionality for each combination of those 

single functions. We extracted the slopes and standard errors (s.e.) from linear models. We 

calculated the 95% confidence interval (CI = 1.96 × s.e.) for each slope estimate. If the lower 

95% CI was higher than zero or the upper 95% CI was lower than zero, we categorized the 

slope estimates as positive or negative effects of biodiversity on multifunctionality, 

respectively.  

Using the threshold-based approach we further compared the effects of biodiversity on 

multifunctionality using the five empirical datasets. Specifically, we followed the approach 

adopted by Byrnes et al. (2014b). We first standardized single functions to their maximum 

values by taking the mean of the six highest measures of each function as the maximum 

value. We counted the number of functions surpassing a given threshold ranging from 0.05 to 

0.99. We conducted the threshold-based analysis by fitting the generalized linear models with 

the raw number of functions and the range standardized number of functions upon 

biodiversity. 

All statistical analyses were conducted in R version 3.3.3 (R Development Core Team, 2019). 

The threshold approach was conducted using the package ‘multifunc’ (Byrnes, et al., 2014b). 
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RESULTS 

Biodiversity-multifunctionality relationships vary with the averaging, summing and 

scaling approaches 

Our simulation models revealed that the strength of biodiversity-multifunctionality 

relationships varied with the approaches used to estimate multifunctionality (Figure 2). 

Generally, the averaging approach showed that the average estimated slopes relating 

biodiversity to multifunctionality did not change as the number of functions increased for a 

given number of functions subject to complementarity (e.g., three out of nine functions 

subject to complementarity). However, the strength of the average estimated slopes increased 

as the number of functions subject to complementarity increased (from zero to nine). The 

summing and scaling approaches demonstrated that the average estimated slopes increased 

with the number of functions. Furthermore, we found that the averaging and summing 

approaches were sensitive to the methods used to standardize single function (standardized to 

maximum value vs. Z-score). That is, the strength of biodiversity-multifunctionality 

relationships estimated by the Z-score for single function was ~ ten times higher than the 

maximum standardization (Figure 2 and Figure S2). In contrast, we obtained the same 

biodiversity-multifunctionality relationships using the scaling approach whichever the 

standardization methods used (Figure 2 and Figure S2). Finally, when we grouped 

biodiversity-multifunctionality relationships into two categories (significantly positive and 

neutral), we found that, when functions were subject to complementarity, the positive effects 

of biodiversity on multifunctionality were most commonly observed when the number of 

functions included increased (Supplementary Note 4 and Figure S3). 

We found qualitatively similar results when we examined the empirical datasets. The average 

effects of biodiversity on multifunctionality did not change with the number of functions 
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included in the averaging multifunctionality metric, but it increased with the summing and 

scaling multifunctionality metrics (Figure 3). Results of biodiversity experiments such as the 

Jena grassland and European grasslands, were similar with those of observational studies 

such as European forests, Tibetan grasslands and global drylands. Among all the studies, the 

European forests had the largest variability in the effects of biodiversity on single ecosystem 

functions (Figure 4a) and scaling multifunctionality (Figure 4b). Biodiversity-

multifunctionality relationships in temperate grasslands were as strong as they were in global 

drylands (Figure 4b). Furthermore, the probability of biodiversity having positive, neutral or 

negative effects on multifunctionality changed with the number of functions included 

(Supplementary Note 4 and Figure S4). Positive biodiversity effects on multifunctionality 

were more common as the number of functions included increased in the Jena grassland, 

European grasslands, Tibetan grasslands and global drylands. In contrast, neutral biodiversity 

effects on multifunctionality were more common as the number of functions included 

increased in the European forests. 

Biodiversity-multifunctionality relationships vary with the standardization methods of 

the threshold-based approach 

For the simulations using soil microbial biomass data from Jena grassland, we found that the 

effects of biodiversity on multifunctionality (raw slope estimates) increased as the number of 

functions increased (see Supplementary Note 3 for details). However, the effects of 

biodiversity on multifunctionality was identical at a given threshold when the standardized 

slopes were estimated. When exploring the other 82 functions measured in the Jena 

experiment, we found similar results to what we found with soil microbial biomass (data not 

shown). In addition, using the hierarchical sampling simulations, we found that increasing the 

number of functions increased the strength of biodiversity-multifunctionality relationships 
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when we used the raw number of functions that surpassed a given threshold (Supplementary 

Note 3). In contrast, we found that the average effect of biodiversity on multifunctionality did 

not change with the number of functions in total considered when we standardized the 

number of function surpassing a given threshold. Introducing novel functions for the estimate 

of multifunctionality decreased the range of 95% confidence intervals.  

For the empirical datasets, we compared the results using the raw number of functions and 

the range-relevant standardized number of functions. The trends using the raw number of 

functions were similar with those using the range-relevant standardized number of functions, 

but they were different in the strength of biodiversity effects (Figure 5). That is, the effects of 

biodiversity on multifunctionality increased with the number of functions included using the 

raw number of functions. Using the range-relevant standardized number of functions, our 

results showed that biodiversity in the European forests had the largest effects and highest 

variability on multifunctionality, and that biodiversity in the Tibetan grasslands also had 

larger effects than did biodiversity in the Jena grassland, European grasslands and global 

drylands (Figure 5). Most importantly, the results of the threshold-based approach using the 

range standardized number of functions (Figure 5) were generally in line with the results of 

the scaling approach (Figure 4).  
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DISCUSSION 

In this study, we demonstrated that the effects of biodiversity on multifunctionality varied 

across simulations and empirical datasets. Most interestingly, using the same dataset but 

different multifunctionality metrics, the effects of biodiversity on multifunctionality either 

increased or did not change with the number of functions. Although some previous studies 

found similar results when applying the averaging and summing multifunctionality metrics 

and the threshold-based approach (Fanin, et al., 2018, Gamfeldt and Roger, 2017, Meyer, et 

al., 2018), we note that these results depended primarily on the underlying statistics of these 

metrics rather than “real” effects of biodiversity on multifunctionality. That is, the result 

arises because of math, not ecology. Below, we firstly provide our statistical explanations for 

whether biodiversity-multifunctionality relationships change with the number of functions. 

Then we discuss how the standardization methods can be used to improve our understanding 

of biodiversity-multifunctionality relationships across studies. 

First, for the averaging approach, biodiversity-multifunctionality relationships are obtained 

from the relationship between biodiversity and single ecosystem function as follows (see 

proof of the equation in Supplementary Note 2): 

 
        

 

 
∑  

 

 

     

                                       

where  EMFav is the slope estimate between biodiversity and multifunctionality. It can be 

expressed as the expected average effect of biodiversity on multifunctionality.  i is the slope 

estimate of any one of the regression slopes ranging from one to n single ecosystem 

functions. In an extreme case in which these single functions have identical slope estimates 

for the relationships between biodiversity and single ecosystem functions, all the n single 
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functions would have the same regression slopes  1 =  2 =…=  n, then we would obtain the 

following regression slopes for the averaging approach: 

 
        

 

 
∑  

 

 

     

 
 

 
                                                

The effects of biodiversity on multifunctionality ultimately equal the average slope estimates 

between biodiversity and single ecosystem functions, and thus biodiversity-multifunctionality 

relationships would not change as the number of functions increased. Furthermore, the 

population mean may become higher when there are more ecosystem functions subject to 

complementarity because of higher slope coefficients obtained. Therefore, we can explain 

why the strength of the average biodiversity effect on multifunctionality increases with the 

number of functions subject to complementarity (Gamfeldt and Roger, 2017). In addition, 

since the population mean increases with the number of functions subject to 

complementarity, the fraction of biodiversity having a positive effect on multifunctionality 

increases with the number of functions subject to complementarity in the same way (Figures 

S3 and S4). 

Second, for the summing approach, biodiversity-multifunctionality relationships can be 

obtained from the relationship between biodiversity and single ecosystem functions as 

follows: 

 
         ∑  

 

 

     

                                       

In an extreme case the same as the averaging approach in which these single functions have 

identical slope estimates, we would obtain the following regression slopes for the summing 

approach: 
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         ∑  

 

 

     

                                          

The expected effects of biodiversity on the summing multifunctionality tend to approach the 

sum of the slope estimates between biodiversity and single ecosystem functions. Thus, the 

biodiversity-multifunctionality relationships would increase with the number of ecosystem 

functions. In comparison to the averaging approach, our results showed that the summing 

approach gave different weights to the importance of single ecosystem functions (Hölting, et 

al., 2019). Consider the hypothetical example that we have three ecosystem functions and the 

effects of biodiversity on each single ecosystem functions are 0.2, 0.4 and 0.6, respectively. 

The averaging approach would give a weight of 1/3 to each function while the summing 

approach would give a weight of 1. Therefore, we would derive the effects of biodiversity on 

multifunctionality to be 0.5 for the averaging approach and 1.2 for the summing approach. 

Therefore, the underlying assumptions are that for the averaging approach biodiversity affects 

the level of multifunctionality via averaging effects of single functions, while for the 

summing approach biodiversity affects multifunctionality via simple additive effects of single 

functions. 

Third, for both the averaging and summing approaches, the methods used to standardize 

single function influenced the strength of biodiversity-multifunctionality relationships 

(Figures 1 and S2). However, the scaling multifunctionality metric was not sensitive to the 

methods used for standardizing single ecosystem functions (Figures 1 and S2). The scaling 

metric thus puts the slope estimates into a common scale and aides in comparisons among 

different empirical studies. Traditionally, the standardized coefficients (or slope estimates) 

can be obtained in two ways (Grace, et al., 2018). The first is to standardize the response 

variables and predictors using Z-score or range-relevant standardization before fitting the 

models. The second is to obtain the raw slope estimates in advance and then standardize the 
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slope estimates by the ratios of the standard deviations of predictors and response variables. 

In this study, we used the former way to derive the standardized slope coefficients. One of the 

advantages of standardized coefficients are to provide a common scale to compare the 

relative importance of predictors (e.g., biodiversity, climate and soil physicochemical 

properties) on response variables for between-study comparisons (Schielzeth, 2010). The idea 

to use the scaling metric was consistent with the methods often used in the study of 

biodiversity-multifunctionality relationships, in particular estimating the standardized 

coefficients by using either structural equation models (Delgado-Baquerizo et al., 2016b, 

Jing, et al., 2015, Lefcheck et al., 2015b, Wang et al., 2019) or bivariate and multivariate 

linear models (Le Bagousse-Pinguet et al., 2019, Soliveres et al., 2016a, Soliveres et al., 

2016b). Therefore, we argue that this approach, which could provide a standard way to 

compare results among studies, should become the standard approach for synthetic studies or 

for studies that compare the influence of biodiversity on multifunctionality. However, we 

caution that the influence of increasing biodiversity on the scaling multifunctionality metric 

(       ) with the number of functions does not imply a biological mechanism that drives 

biodiversity-multifunctionality relationships (Supplementary Note 2). The increase in 

        could arise from the decline in the variation in the level of multifunctionality and the 

average pairwise correlations among single functions with increasing number of functions 

considered (Supplementary Note 2).  

Finally, for the threshold-based approach, when increasing the raw number of functions, a 

mathematical artefact emerged as increased the effects of biodiversity on multifunctionality. 

Gamfeldt and Roger (2017) also found that when the number of functions in total considered 

varies, the threshold-based approach might be not suitable for comparing the effects of 

biodiversity on multifunctionality among studies. The mathematical artefact appeared to 

contradict the original idea of the threshold-based approach (Byrnes, et al., 2014b, Lefcheck, 
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et al., 2015a). However, we demonstrated that this mathematical artefact was due to the upper 

limits of the number of functions per addition of one species increasing with the number of 

functions in total considered (Supplementary Note 3). When we used the range-relevant 

standardization, we found that the standardized slope estimates between biodiversity and the 

number of functions surpassing a given threshold were identical for soil microbial biomass in 

the Jena biodiversity experiment. This finding was in line with a recent analysis of the Global 

drylands dataset (Le Bagousse-Pinguet, et al., 2019), which the biodiversity effects on 

multifunctionality were comparable when the standardized regression coefficients were used 

to quantify the effects of biodiversity on multifunctionality. 

Over the past decade, we have moved toward a better understanding of how biodiversity is 

related to multiple ecosystem functions simultaneously. However, in this study, we showed 

that the interpretation of biodiversity-multifunctionality relationships varies with the method 

considered, and that the standardization methods provide a valuable opportunity to improve 

our understanding of the statistical mechanisms underlying multifunctionality. The choice of 

standardization methods is thus critical and has a significant impact on the outcomes of a 

study (Gamfeldt and Roger, 2017, Schmid et al., 2017). However, to date, there has not been 

a unified or best method for estimating ecosystem multifunctionality (Byrnes, et al., 2014b, 

Hölting, et al., 2019, Manning, et al., 2018), and different approaches for quantifying 

biodiversity-multifunctionality relationships yield different results (Gamfeldt and Roger, 

2017, Meyer, et al., 2018); this is an obvious and dispiriting set of circumstances if the goal 

of a research is to advance our understanding of how biodiversity affects ecosystem 

multifunctionality.  

The standardized multifunctionality metrics we propose here are desirable and have several 

advantages when examining spatial or temporal variation in biodiversity-multifunctionality 
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relationships. First, they enable the interpretation of biodiversity effects easily. Second, they 

facilitate between-study comparisons by estimating a standardized effect size for quantitative 

reviews and meta-analyses. We therefore suggest the use of standardized multifunctionality 

metrics (e.g., scaling or range-relevant metrics), especially when the studies use different 

numbers of ecosystem functions or measure different ecosystem functions. There are, 

however, three important caveats. First, standardized multifunctionality metrics cannot 

overcome the limitations of the averaging approach, threshold-based approach or the other 

commonly used approaches (Byrnes, et al., 2014b, Dooley, et al., 2015). Second, different 

ecosystem properties (and hence multifunctionality metrics) might be valued in different 

ecological contexts, so some researchers may prefer other multifunctionality metrics 

(Hölting, et al., 2019). For example, when researchers quantify multifunctionality, the idea is 

not necessarily to make a metric that is comparable across studies, instead they might be 

interested in optimizing overall ecosystem functioning by exploring different scenarios of 

stakeholder priorities given to single ecosystem functions (Allan, et al., 2015, Manning, et 

al., 2018, Slade, et al., 2017). Finally, when individual functions are driven by different 

factors (Bradford et al., 2014b), it would be interesting to explore the effects of biodiversity 

by using single functions approach and multiple indices of overall ecosystem functioning 

(Byrnes, et al., 2014b, Ratcliffe, et al., 2017). 

In this study, we have focused on plant species richness as the measure of biodiversity in part 

because this is easier than trying to estimate abundance, and in part because most early 

experimental studies focused on biodiversity as the number of species and controlled the 

number of species in plots. However, in natural communities, or in hyper-diverse 

communities, it is challenging to detect all of the species present (Chao et al., 2017). It would 

be interesting to use abundance-based diversity indices in future studies such as the 

exponential of Shannon entropy and the inverse of Simpson index. Those indices are the 
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effective numbers of species and estimate the true diversity by giving different weights to 

rare vs. common species (Jost, 2006). In addition, our simulations and statistical analyses 

focused on multifunctionality metrics with Gaussian distributions. We did not evaluate 

whether other data distributions (e.g., binary, log-normal and skewed) influenced the metric 

performance (Schoolmaster et al., 2012). When there is a combination of distributions in the 

data, the convergence of statistical models may disappear because of deviations in normality 

and linearity. The range-relevant standardization (Grace, et al., 2018) might be more 

appropriate in this situation. Future studies should also focus on deepening our understanding 

of how ecosystem functions interact with each other (e.g., trade-offs and synergies) (Dooley, 

et al., 2015, Meyer, et al., 2018, Slade et al., 2019) and the underlying statistical 

underpinnings of different multifunctionality metrics (Hölting, et al., 2019). This would 

improve the interpretation and comparison of biodiversity-multifunctionality relationships. 

CONCLUSION 

The most interesting result from our work is that we can now compare, on a level playing 

field, how biodiversity is related to multifunctionality across studies that differ in scale and 

system. Similarly with van der Plas (2019), we found that biodiversity is key driver of 

multifunctionality in naturally and randomly assembled communities. The scaling and range-

relevant approaches allow us to do this because they put biodiversity-multifunctionality 

relationships on a common scale. Our approach would allow comparisons among systems 

that differ in land-use history, climate, soil properties, or other factors. In fact, it will increase 

the likelihood that we understand how those factors might alter the relationship between 

biodiversity and multifunctionality in a changing world. Taken together, our findings suggest 

that standardization methods are a useful way of comparing biodiversity-multifunctionality 

relationships among studies. 
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FIGURE CAPTIONS 

Figure 1. An example shows the effects of biodiversity on single functions and ecosystem 

multifunctionality (EMF). We simulate two ecosystem functions (F1 and F2), each with a 

standardized normal distribution. Numbers in the bars are slope estimates. The blue lines of 

the inset show the slopes of linear regression between biodiversity and ecosystem functions. 

The orange lines in the middle of the inset indicate the slopes obtained either from the 

averaging metric or from the summing metric. As illustrated in the figure, the Z score-

transformed averaging and summing metrics have the same slope estimate. 

Figure 2. Summary of the simulations shows the effects of biodiversity on multifunctionality 

(EMF) in related to the number of functions included in the EMF estimate. The jittered points 

are the slope estimates showing the effects of biodiversity on EMF in each combination of 

the nine functions considered. Lines (average biodiversity effect on EMF) are the slopes of 

linear regression between the biodiversity-multifunctionality (all combinations of the nine 

functions) relationships and the number of ecosystem functions. Note that we use different 

ranges of y-axis to aid in visualization. 

Figure 3. Relationships between the number of functions included in the estimate of 

multifunctionality (EMF) and the effects of biodiversity on EMF in five empirical datasets. 

Black lines (average biodiversity effect on EMF) are the slopes of linear regression between 

the number of functions and the biodiversity-EMF relationships. Red points indicate 

significantly positive effects of biodiversity on EMF, gray points indicate neutral effects, and 

blue points indicate significantly negative effects of biodiversity. 
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Figure 4. Effects of biodiversity on single ecosystem functions and multifunctionality (EMF) 

across five empirical datasets. (a) Each boxplot shows the effects of biodiversity on single 

ecosystem functions; each jittered point represents the slope estimate of the relationship 

between biodiversity and the single ecosystem functions; the lines in the box denote median, 

the middle 50% of the data are represented by the interquartile range box and the bottom 25% 

and the top 25% of the data are represented by the whiskers. (b) The density plot shows the 

effects of biodiversity on EMF (the scaling metric is reported here).  

Figure 5. Effects of biodiversity on multifunctionality using the threshold-based approach 

across five empirical datasets. The upper panels summarize the results using unstandardized 

number of functions surpassing a given threshold. The lower panels summarize the results 

using standardized number of functions, which puts the effect size (change in number of 

functions per addition of one species) on a common and comparable scale across different 

studies. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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