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Abstract 

 

In this study, an inventory of landslides induced by the 2011 Lorca earthquake (Mw 5.1) has 

been used in order to develop a new procedure to obtain objective logic-tree weights for a 

probabilistic earthquake-induced landslide hazard analysis. The 2011 Lorca earthquake 

triggered more than 250 landslides, mainly of disrupted type. The logic-tree was designed 
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having regard to variability of relevant geotechnical parameters involved in the problem and 

uncertainties associated with the use of several empirical relationships in order to compute 

Newmark displacements. For the purpose, the resulting hazard maps were compared with this 

landslide inventory, and weights estimated for each branch of the logic tree based on these 

results. The best model for seismic landslide hazard mapping for a moderate earthquake 

correctly identifies around 72 % of landslide areas. Based on the set of parameters that 

comprises (depth of failure surface, specific weight, cohesion, friction angle and Newmark 

displacement model), the corresponding weights were objectively established. These weights 

are reliable enough for the obtaining seismic landslide hazard maps and may be implemented 

in similar environments characterized by moderate-low magnitude earthquakes (Mw < 5.5). 

 

Keywords: landslide, earthquake, seismically-induced landslide, hazard map, logic tree. 

 

 

1. Introduction 

 

The occurrence of earthquake-induced landslides represents a relevant contribution to 

seismic risk (Bird and Bommer, 2004). Producing hazard maps to delineate areas prone to 

earthquake-induced landslides is likely the best way to address this issue in our societies. 

Although several methodologies have been proposed for the production of such maps 

(Wieczoreck et al., 1985; Luzi et al., 2000; Mulas et al., 2001; Del Gaudio et al., 2003; Jibson, 

2011; Rathje and Antonakos, 2011), the method proposed by the United States Geological 

Survey (Jibson, 1993; Jibson et al., 2000) has been the most widely used in the last two 

decades. More recently, a new approach, called PARSIFAL (Probabilistic Approach to pRovide 

Scenarios of earthquake-Induced slope FAilLures), has been proposed (Esposito et al, 2016). 

This methodology considers different failure mechanisms. It allows comprehensive mapping of 
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earthquake-induced landslide scenarios in terms of exceedance probability of critical threshold 

values of co-seismic displacements. In the analysis, first-time landslides (due to both rock-

slope failures and shallow earth-slides) and reactivations of existing landslides are also 

considered. PARSIFAL was applied in the framework of seismic microzonation studies in Italy 

after the 2016-2017 destructive seismic sequence in the Central Apennines (Martino et al., 

2019). The methodologies for producing earthquake-induced landslides hazard maps are 

based on the concept of sliding rigid block (Newmark, 1965) and compute the accumulated 

displacement of the slope once the earthquake is over (also known as Newmark displacement) 

through two integrations. Seismic acceleration is integrated to obtain velocity for those 

portions of the accelerogram record where the acceleration overcomes the yield acceleration 

(ky) in slope stability, and then velocity is integrated to obtain displacement. Alternatively, 

displacements may be computed from empirical relationships that take into account the 

severity of shaking (earthquake magnitude, peak ground acceleration –PGA–, peak ground 

velocity –PGV–, Arias intensity –IA–, etc.) and the yield acceleration in slope stability. The 

success of this methodology comes from the fact of merging quantitatively the main factors of 

the problem in a Geographic Information System (GIS) environment: geometry of slopes, 

geotechnical parameters of slope materials, and severity of seismic ground motion. This allows 

for the rapid production of hazard maps. This methodology has proved to be very useful for 

studying the occurrence of small, shallow and disrupted landslides (Jibson et al., 2000; Jibson 

and Michael, 2009) which is the typology of landslides more frequently induced by 

earthquakes (Keefer, 1984; Delgado et al., 2011). 

 

The Newmark sliding block methodology has several limitations in relation to the 

difficulty of incorporating the uncertainties/variability of the three types of variable used in 

our analysis. As for small sized landslides (such as rock slides and falls), Rodríguez-Peces et al. 

(2011) showed that the resulting Newmark displacements vary highly depending on the spatial 
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resolution of the digital elevation model (DEM) used to obtain the relief: low resolution DEMs 

tend to smooth the relief, resulting in high safety factors and yield accelerations, and, 

moreover, lower Newmark displacements. These authors suggest the use of high resolution 

DEMs, with pixel size similar to or slightly greater than the size of slope instabilities expected 

to be induced by earthquakes. 

 

The geotechnical properties of geological materials are another source of limitation. 

They usually are characterized by inherent variability (Phoon and Kulhawy, 1999). McCrink 

(2001) and Dreyfus et al. (2013) studied the effect of strength parameters variability on the 

resulting hazard maps. They compared the resulting maps with the inventories of seismically 

induced landslides of the 1989 Loma Prieta (Mw = 6.8) and 1994 Northridge (Mw = 6.7) 

earthquakes, both located in California (USA). These authors found that maps correctly 

captured only part of the observed landslides. The proportion of correctly captured ground 

failures increased when the strength parameters were reduced, but at the cost of excessively 

increasing the total area of predicted landslides (increasing the size of zones with higher 

hazard categories). Another related limitation of the present methodology stems from an 

inability to include spatial variability of strength parameters within the same geological 

formation (Dreyfus et al., 2013). 

 

Several authors have proposed empirical relationships in order to estimate Newmark 

displacements (Jibson et al., 2000; Bray and Travasarou, 2007; Jibson, 2007; Saygili and Rathje, 

2008; Chousianitis et al., 2016; among others). The use of different relations leads to different 

displacements. Du et al. (2018) studied the uncertainty associated with the use of different 

empirical relations. These authors prove that uncertainties are greater for those relations 

based on a single ground motion parameter (PGA, PGV or IA) when compared with those that 

consider multiple ground motion parameters (usually two). Dreyfus et al. (2013) show that the 
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results of a given model depend less on the Newmark displacement relationship and ground 

motion parameters of the earthquake than on the strength parameters used. 

 

Monte Carlo simulations have been used to manage the variability of variables (Refice 

and Capolongo, 2002; Murphy and Mankelow, 2004), although the high volume of data 

required limits use of this approach. Rathje and Saygili (2009) propose the use of the logic-tree 

methodology instead. This methodology is widely used in seismic hazard studies (Kulkarni et 

al., 1984; Bommer and Scherbaum, 2008; Delavaud et al., 2012; IGN, 2017; among others). A 

set of nodes form a logic-tree, with one node for each variable of the problem. From each 

node, several branches depart representing the discrete values that the corresponding variable 

can take. Each branch is characterized by its weight that reflects its relative relevance from the 

analyst’s point of view. The sum of the weights corresponding to the branches of each node is 

always one. The end branches of the logic tree weight are the product of its path branches 

weights. The result of a logic-tree study is obtained as the weighted summation of the results 

obtained at the n-branches of the model. Finally, a hazard value is estimated for each path 

through the logic-tree, with the total weighting of each hazard value being the product of the 

individual branch weights. Wang and Rathje (2015) used the logic-tree methodology to 

incorporate the variability in strength parameters of materials in an area. 

 

The main problem when using this logic-tree methodology is how weights are 

estimated/set for each branch. Several possibilities are found in literature: sometimes they are 

based on an expert judgement or subjective considerations derived from available information 

(e.g. IGN, 2017) and sometimes they are set based on probabilistic models (e.g. Wang and 

Rathje, 2015). At present, there is no proper method to set weights objectively. 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

6 

 

In this study, we have worked with the inventory of landslides induced by the 2011 

Lorca earthquake with Mw 5.1 that triggered far more slope instabilities than any other 

instrumental earthquake recorded in Spain (Alfaro et al., 2012; Rodríguez-Peces et al., 2013). 

We have used the well-known data of this event (magnitude, ground motions, landslides 

location, and geotechnical parameters) to analyze the efficiency of the seismically-induced 

landslide hazard maps obtained using a logic tree. This tree was designed in order to consider 

variability of geotechnical parameters and uncertainties associated with the use of several 

empirical relationships to compute Newmark displacement. The aim is to compare the 

resulting hazard maps with the available landslide inventory and propose a new method to 

estimate objectively weights for each branch based on those results. These weights will form 

the basis for research in progress with the aim of producing seismic landslide hazard maps for 

moderate-low magnitude events (Mw < 5.5) along the main lifelines in Southern Spain. 

 

2. The 2011 Lorca earthquake 

 

The Lorca earthquake occurred on May 11, 2011, at 6:47 pm (local time) with a 

magnitude of Mw 5.1 (IGN, 2011). It had a focal depth of 4 km and it was located at less than 5 

km NE of the city of Lorca (Murcia, SE Spain). It was preceded by a Mw 4.5 foreshock at 5:05 

pm (local time) and followed by multiple low magnitude (Mw< 4.0) aftershocks. This seismic 

event caused nine fatalities, and damaged more than 1000 buildings causing economic losses 

of more than 1200 million euros (following Martínez-Díaz et al., 2012). The event occurred in a 

segment of the Alhama de Murcia Fault, the main active fault in the area (Fig. 1). This fault 

accommodates a fraction (around 0.1-0.6 mm/yr) of the approximately 5 mm/yr on the 

convergence along the Nubian and Eurasian plates boundary (Masana et al., 2004). 
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The local ground motion caused by this seismic event was recorded by the 

accelerograph stations of the Spanish strong ground motion network, managed by the Spanish 

Instituto Geográfico Nacional (IGN). Unfortunately, only one station was located within the 

epicentral area, where all induced landslides occurred (Fig. 1). Peak ground acceleration (PGA) 

reached a value of 0.36 g (N-S component) at LOR station (see location in Fig. 1), although PGA 

varied significantly between horizontal components (Fig. 2a) due to directivity effects (López-

Comino et al., 2012). Average PGA values (computed as geometric mean) varied from 0.24 g at 

LOR station to less than 0.05 g at stations located 20 km (or more) from the epicenter. Average 

horizontal Arias Intensity (IA) varied between 0.24 m/s at LOR station and less than 0.02 m/s at 

distances above 20 km (Fig. 2b). 

 

Newmark displacements have been computed (Fig. 2c) from accelerograms recorded 

at LOR station following the algorithm described by Jibson (1993). ky values are fixed (0.01, 

0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.125, 0.15, 0.20, 0.25 and 0.30 g) and thereafter 

cumulative displacement was computed by integration of those parts of accelerograms where 

ground acceleration was greater than these yield acceleration values. 

 

The 2011 Lorca earthquake triggered more than 250 landslides (Fig. 1), mainly of 

disrupted type such as rock/soil falls, soil slides and rock avalanches (Fig. 3). Alfaro et al. (2012) 

mapped them immediately in the aftermath of the earthquake. As these authors point out, it is 

not possible to discriminate which event (fore/main shock) triggered these landslides because 

foreshock and mainshock occurred close in time to each other. Therefore, they were all 

considered to be triggered by the mainshock. In this regard, all landslides can be considered as 

first-generation instabilities, and therefore they are not the result of reactivation of prior 

cases. A common characteristic of all landslides is their small size. Volume was estimated from 

thickness and the area covered by debris in the deposition area. The resulting volumes show 
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that about 20 % of slope instabilities had very small volumes (<0.1 m3) and only 50 % of them 

had volumes above 1 m3 (Fig. 4). Although these sizes appear to be relatively small, many of 

them caused a lot of damage and cuts on roads and infrastructures, as well as significant social 

concern. 

 

Most of inventoried landslides were developed in steep slopes involving mainly four 

lithological groups (Fig. 1): 1) Calcareous sandstones and limestones; 2) conglomerates, 

sandstones and argillites; 3) marls and gypsums; and 4) phyllites and quartzites (Rodríguez-

Peces et al., 2013). In addition, the Lorca earthquake took place close to the start of the dry 

summer season, and those lithological groups were in dry conditions (no soil/rock saturation). 

 

The distribution of slope instabilities related to the 2011 Lorca earthquake was 

compared with prior earthquake-triggered landslide hazard maps (Rodríguez-Peces et al., 

2013): a probabilistic map considering the occurrence of the most probable earthquake for a 

475-year return period in the Lorca Basin (Mw 5.0), and a deterministic map with the 

occurrence of a Mw 5.1 earthquake equivalent of the 2011 Lorca event. In both cases, these 

authors found that the most frequent values of Newmark displacement related to the slope 

instabilities triggered by such moderate earthquakes were lower than 2 cm. These results 

concur with the critical displacement value of 2 cm proposed by Wilson and Keefer (1985) for 

disrupted rock falls similar to the case in Lorca. 

 

3. Methodology 

 

3.1. Logic-tree approach 
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A logic-tree approach is proposed in order to incorporate the epistemic uncertainties 

in the procedure for computation of earthquake-induced landslide maps, for each source of 

uncertainty. The structure of the logic tree was divided into three parts having regard to the 

uncertainties related to the slope instability size (i.e., depth of the failure surface), 

geotechnical parameters (i.e., specific weight, cohesion and friction angle) and Newmark 

displacement regression models (Fig. 5). 

 

In the first section of this logic tree, the variability of the depth of the failure surface 

was taken from the frequency histogram of the sliding block size according to the slope 

instability inventory of the 2011 Lorca earthquake (Fig. 6). The branches of the logic tree were 

defined by the values of the depth of the failure surface (t) of 0.5, 1.0, 2.0 and 3.0 m. 

 

For the second section of the logic tree, different values of specific weight, cohesion 

and friction angle were assigned to each lithological unit (Tables 1 and 2). These strength 

parameters were derived from data from 163 geotechnical boreholes and 20 direct shear tests 

(68 values of specific weight, 40 values of cohesion and friction angle), as well as 114 

geomechanical field surveys and 14 in situ testings (544 values of cohesion and friction angle) 

performed in the Lorca area (Fig. 1) on outcropping rock masses and soil deposits. Previous 

studies on seismically induced landslides concluded that instabilities developed in rocky 

materials are controlled by pre-existing fractures (Keefer, 1984). For this reason, cohesion and 

friction angle values for rock-type lithological groups mostly correspond to rock-mass joints. 

Then, the strength parameters of joints in rock-type materials were estimated using Barton-

Bandis failure criterion (Barton and Choubey, 1977) regarding the thickness of the fallen rock-

blocks. Nevertheless, this failure can occur through the intact material as well as pre-existing 

discontinuities in relatively homogeneous materials, such as soils. 
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In order to include the variability of shear strength parameters in the logic-tree 

procedure, Wang and Rathje (2015) used the three-point estimation of the normal distribution 

that retains the mean and standard deviation of the data distribution (Keefer and Bodily, 

1983). However, these authors assumed different values of coefficients of variation (mean 

divided by standard deviation) due to the lack of enough data for a suitable statistical analysis. 

In this work, as stated above, we have a large amount of data that has been statistically 

processed using the IBM SPPS Statistic 25 statistical software (IBM Corp., 2017). Thereafter, 

the most likely, low and high values of each geotechnical parameter have been taken as 50, 10, 

and 90 percentiles (Tables 1 and 2) representing respectively μ and μ ± 1.33σ. These values 

represent the logic tree branches for this section. 

 

As for the third section of the logic tree, we have selected 10 Newmark displacement 

empirical models from the large number of available relationships (Table 3). Here the only 

models that apply to the case were used taking into account the available data on the 2011 

Lorca earthquake. Specifically, we only selected those relationships including PGA or IA as 

independent variables. The use of this large amount of Newmark displacement regression 

models can be seen as an attempt to incorporate the widest possible range of displacement 

values and epistemic uncertainties. This is especially relevant in the study area, since no local 

displacement model is currently available. 

 

Finally, a new software code was developed in order to obtain the landslide hazard 

maps in terms of Newmark displacement considering the different branches of the logic tree 

(Román-Herrera et al., 2018). That semi-automatic code was written in Python using a 

geographic information system (ArcGIS© 10 software). The code only considers areas with 

slope above 10° for computing Newmark displacements. 
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3.2. Procedure for obtaining weights on logic tree branches 

 

A large number of earthquake-induced landslide hazard maps in terms of the Newmark 

displacement were obtained taking into account the variability of all variables included in the 

logic tree. Selecting the best parameter set and model for seismic landslide hazard mapping 

was performed by comparing the locations of predicted landslides for all models with the 

inventory of landslides triggered by the 2011 Lorca earthquake. 

 

The prediction efficiency of each combination of parameter sets and empirical models 

was evaluated based on the success rate percentage of the estimated hazard map by 

combining the efficiency parameters used by McCrink (2001). Applying his procedure, a higher 

level of efficiency should be found maximizing the percentage of correctly identified landslide 

(%GFC = % Ground Failure Capture) and minimizing the percentage of the total area identified 

as landslides (%TAC = % Total Area Covered). Considering that landslides triggered by the 2011 

Lorca earthquake have been related to Newmark displacements lower than 2 cm (Rodríguez-

Peces et al., 2013), failures located over areas with Newmark displacement higher than 1 cm 

were considered for computing the %GFC, while %TAC was estimated considering the area 

with Newmark displacement higher than 1 cm over the total studied area. This threshold value 

of Newmark displacement is related to a moderate seismic hazard category with a probability 

of landslide higher than 2 % (Jibson and Michael, 2009). 

 

Taking into account both parameters, another efficiency criterion can also be 

established by maximizing the difference between %GFC and %TAC (%Difference =%GFC - 

%TAC), which penalizes hazard maps that have a high %GFC value simply because they predict 

a very large area with landslides (%TAC). Finally, the success rate percentage (%SR) of the 
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various hazard maps was estimated by multiplying %GFC and %Difference, and, therefore, 

maps can be ordered from the highest to the lowest success rate. 

 

The weights on logic tree branches (low, most likely and high) have been obtained 

taking into account the success rate (%SR) corresponding to the variability of each variable, 

fixing the value of the remaining variables. Following this procedure, the weight of each 

branch is estimated from 0 to 1 in proportion to the success rates obtained for each variable. 

The branch with the highest %SR is assigned the greatest weight; the next branch with a 

smaller %SR has a lower weight, and so on. The sum of the branches weights corresponding to 

the same node must be equal to one. 

 

The final weights associated with each landslide hazard map have been calculated by 

multiplying the partial weights obtained previously for each branch from the first section of 

the logic tree (i.e., depth of the failure surface) going through the second part (i.e., specific 

weight, cohesion and friction angle) to the last part (i.e., Newmark displacement regression 

models). 

 

The variability of results depending on the different values for the considered variables 

(landslide size, geotechnical parameters, Newmark displacement regression model) was 

analyzed using the SPPS© statistical software (IBM Corp., 2017). 

 

4. Results and Discussion 

 

Having applied the above-described methodology, 1080 landslide hazard maps in 

terms of Newmark displacement were obtained regarding the 2011 Lorca earthquake (Mw 5.1) 

and the variability of all variables through the logic tree. This event occurred under dry 
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conditions of slopes. Figure 7 shows the models using the efficiency parameters as described 

by McCrink (2001). In general, the percentage of correctly identified landslide areas (%GFC) is 

between 24 and 86 %, while the difference between the percentage of correctly identified 

landslide areas (%GFC) and the percentage of total area identified as landslides (%TAC) is 

between 4 and 55 %. 

 

The highest percentage of success rate (%SR) of any seismic landslide hazard map 

regarding the Lorca earthquake is 38.5 % (optimum model in Fig. 7) which corresponds to 15.1 

% of the total area identified as landslides (%TAC) and 70.0 % of correctly identified landslide 

areas (%GFC). In addition, %Difference = 54.9 % is also the highest value. These values are 

higher, especially the %Difference, than those found by McCrick (2001) with values lower than 

38 %. Therefore, this hazard map comprises the following set of parameters: 

 

- Depth of the failure surface (t): 3.0 m. 

- Specific weight (ϒ): percentile 10. 

- Cohesion (c): percentile 10. 

- Friction angle (Φ): percentile 90. 

- Newmark displacement model: RS09 by Rathje and Saygili (2009). 

 

Previous set of parameters represents the optimum case (Figures 7 and 8a). This map 

shows areas with very high seismic landslide hazard (Newmark displacements greater than 15 

cm) favoring a large number of correctly predicted slope instabilities (Fig. 8a). On the other 

hand, the map with the highest percentage of landslide areas correctly identified (%GFC = 85.6 

%) corresponds with a very high total area identified as landslides (%TAC = 74.3 %) and very 

low %Difference = 9.7 % (Figure 8b). These results are related to the weakest geotechnical 

conditions with regard to slope stability. Newmark displacements greater than 10 cm should 
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have corresponded to the triggering of much larger landslides than was actually the case. 

These high Newmark displacements are also a function of the extreme values of the input set 

of parameters. In this regard, this map significantly overpredicts what actually happened, 

being an unrealistic characterization of conditions during the earthquake. 

 

4.1. Influence of variability of slope instability size 

 

The variation in success rate (%SR) has been analyzed taking into account the depth of 

the failure surface (Fig. 9a).The maximum %SR values are quite similar, regardless of depth as 

the computed percentages closely range from 36.4 to 38.5 %, varying from 0.5 up to 3.0 m 

depth. However, considering the median and mean values, the %SRs of the models improve as 

the depth of the failure surface increases. In particular, the median %SRs obtained for depths 

of 0.5 and 1.0 m are almost the same (10.6 and 10.7 % respectively), while %SRs increase for 

depths of 2.0 and 3.0 m (19.0 and 21.5 % respectively). Similar patterns are observed for mean 

values: 14.0 % for depths of both 0.5 and 1.0 m, and 18.3 and 22.5 % for depths of 2.0 and 3.0 

m, respectively. These results are consistent with a usual geotechnical behavior in relation to 

slope stability. As the depth of failure surface (i.e., size) of landslides increases, the effect of 

cohesion decreases. Therefore, if all other parameters remain constant, increasing the depth 

will decrease the shear resistance and increase landslide susceptibility. 

 

From a statistical point of view (t and Mann-Whitney tests), there are no significant 

differences between means and medians of the SR samples of 0.5 and 1.0 m. Thus, they could 

be considered together in a single branch of the logic tree instead of two. Consequently, the 

node related to the variability of slope instability size could have three branches (1.0, 2.0 and 

3.0 m), rather than the four initially considered. 
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4.2. Influence of variability of geotechnical parameters 

 

The variation in success rate (%SR) has also been analyzed considering the specific 

weight variability (Fig. 9b). The maximum %SR values are the same regardless of the specific 

weight: 38.5 % for percentiles 10, 50 and 90, respectively. Moreover, the improvement in %SRs 

is very small, with a very slight increase as regards the percentile. In particular, the median 

%SRs are 13.2, 14.4 and 16.6 % for percentiles 10, 50 and 90, respectively. A similar pattern is 

observed for mean values: 16.8, 17.1 and 17.8 % for percentiles 10, 50 and 90, respectively. 

From a statistical point of view (t and Mann-Whitney tests), there are no significant differences 

between mean and median values concerning %SR samples for percentiles 10, 50 and 90. 

Therefore, the %SR is not affected by the variability of the specific weight and a fixed value 

should be used to perform the calculations needed to obtain the %SR (e.g., percentile 90). In 

this regard, there is no need to use the specific weight as a node in the logic-tree procedure as 

initially planned.  

 

Considering the variation in %SR with respect to cohesion variability (Fig. 9c), the 

maximum %SR values are very different and they decrease as the percentile increases: 38.5, 

34.3 and 20.9 % for percentiles 10, 50 and 90, respectively. In addition, the median %SRs are 

27.1, 12.0 and 9.7 % for percentiles 10, 50 and 90, respectively. A similar pattern is observed 

concerning mean values: 26.2, 15.6 and 9.8 % for percentiles 10, 50 and 90, respectively. These 

results concur with usual geotechnical behavior, as increasing the cohesion will increase the 

shear resistance and decrease landslide susceptibility. From a statistical point of view (t and 

Mann-Whitney tests), there are significant differences between means and medians regarding 

%SR samples of percentiles 10, 50 and 90. Therefore, the %SR is affected by the variability of 

the cohesion and should be used as a node with three branches in the logic-tree procedure. 
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Finally, the variation in %SR with respect to the friction angle variability is shown in 

Figure 9d. The maximum %SR values are quite different and they decrease as the percentile 

increases: 28.0, 34.1 and 38.5 % for percentiles 10, 50 and 90, respectively. In addition, the 

median %SRs are 12.4, 19.4 and 15.2 % for percentiles 10, 50 and 90, respectively. Similar 

patterns are observed concerning mean values: 12.9, 19.5 and 19.3 % for percentiles 10, 50 

and 90, respectively. These results also agree with a typical geotechnical behavior, as 

decreasing the friction angle will decrease the shear resistance and increase landslide 

susceptibility. From a statistical point of view (t and Mann-Whitney tests), there are significant 

differences between mean and median values regarding %SR samples for percentiles 10, 50 

and 90. Therefore, the %SR is affected by the variability of the friction angle and should be 

used as a node with three branches in the logic-tree procedure. 

 

4.3. Influence of variability of Newmark displacement regression models 

 

The variation in success rate (%SR) has been analyzed (Fig. 9e) taking into account 

Newmark displacement regression equations. The maximum %SR values are similar regardless 

of the equation, ranging from 22.9 to 38.5 % (Table 4). Model RS09 by Rathje and Saygili (2009) 

is the best model with the highest %SR value (38.5 %). The same pattern was found taking into 

account the median and mean values (Table 4). From a statistical point of view (Fisher, Kruskal-

Wallis and Mood tests), there are no significant differences between means and medians 

regarding %SR samples for J07_1 and J07_2 models, so they could be considered to be a single 

node of the logic tree rather than two. In addition, there are no significant differences 

between means and medians values for the remaining equations (J07_3, J07_4, BT07, SR08_1, 

SR08_2, RS09, HL11 and JL18 models). Therefore, they coud be simplified as a single node of 

the logic tree instead of eight, applying one of the models with the highest %SR (e.g., RS09 

model) to obtain the best results. Therefore, the %SR is affected by the variability of the 
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Newmark displacement regression model and should be used as a node with two branches in 

the logic-tree procedure. 

 

4.4. Weights of the variables and hazard maps 

 

In the first part of the logic tree, the distribution of weights in each branch related to 

the depth of the failure surface was taken from the frequency histogram of the sliding block 

size (Fig. 6). As indicated in the previous section, the branches of the logic tree should be 

simplified by depths of 1.0, 2.0 and 3.0 m. For each one, the assigned weights are 0.528, 0.405 

and 0.067, respectively. 

 

In the second part of the logic tree, although it has been pointed out that there is no 

need to use the specific weight as a node, we have obtained the weights for this variable 

anyway (Fig. 10a). The mean values are very similar: 0.323, 0.330 and 0.347 for percentiles 10, 

50 and 90, respectively. Equivalent weights are obtained if median values are considered 0.333 

for percentiles 10, 50 and 90. These results show that the three branches corresponding to 

percentiles 10, 50 and 90 have the same weight (i.e., 0.333), reinforcing our proposal of 

remove them from the logic tree and therefore using a fixed value of the specific weight. 

 

Considering the variable cohesion, mean values of the weights are quite different and 

decrease as the percentile increases: 0.533, 0.281 and 0.186 for percentiles 10, 50 and 90, 

respectively (Fig. 10c). Similar weights are obtained if median values are considered: 0.587, 

0.227 and 0.186 for percentiles 10, 50 and 90, respectively. 

 

As a final point on this part of the logic tree, the friction angle variable shows mean 

values of the weights that are slightly different: 0.269, 0.384 and 0.347 for percentiles 10, 50 
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and 90, respectively (Fig. 10b). Considering the median values, we obtain very similar weights: 

0.250, 0.390 and 0.360 for percentiles 10, 50 and 90, respectively. 

 

As for the last part of the logic tree, mean and median weights obtained by Newmark 

displacement regression models are also very similar for each particular model (Table 5). 

Although individual weights may seem very similar (Fig. 10d), the median values are 

significantly different from each other from a statistical standpoint (Kruskal-Wallis and Mood 

tests). This fact means that all of them should be taken into account and cannot be simplified, 

as suggested above. However, there are no significant differences (Fisher test) between mean 

weights for HL11 and JL18 models, so they could be considered to be a single node of the logic 

tree instead of two, applying the highest %SR model (i.e., HL11 model) to obtain the best 

results. In addition, there are no significant differences between mean values for J07_3, J07_4, 

SR08_2 and RS09 relationships. Thus, they could be simplified as a single node of the logic tree 

instead of four, applying one of the models with the highest %SR (i.e., RS09 model) to obtain 

the best results. Therefore, the %SR is affected by the variability of the Newmark displacement 

regression model and should be used as a node with at least six branches in the logic-tree 

procedure. These branches comprise the J07_1, J07_2, BT07, SR08_1, RS09 and HL11 models, 

with weights of 0.120, 0.144, 0.170, 0.179, 0.200 and 0.188, respectively. The highest weight is 

0.200, corresponding with model RS09 by Rathje and Saygili (2009) which, as stated above, is 

the model with the highest %SR value. 

 

The weights objectively obtained here for each branch of the logic tree are quite 

different from those used by Wang and Rathje (2015). Due to the lack of sufficient input data 

of the various variables, these authors assumed the three-point estimation of the normal 

distribution proposed by Keefer and Bodily (1983), in which weights are fixed statistically: 0.3, 

0.4 and 0.3 for the maximum (percentile90), best (percentile50) and minimum (percentile10), 
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respectively. In addition, Wang and Rathje (2015) subjectively modified these weights to give 

more or less relevance to some of the branches. 

 

Taking into account all partial weights for each branch in the logic tree, the final weight 

for each resulting hazard map was obtained. Having regard to the set of parameters that 

comprises the above-mentioned landslide hazard map with the highest success rate (Fig. 8a), 

the total weight of that map is 0.00062. However, the highest total weight is 0.00394, which 

corresponds to a landslide hazard map (Fig. 8c) characterized by the following combination of 

factors: 2.0 m depth of failure surface , percentile 10 of specific weight, percentile 10 of 

cohesion, percentile 90 of friction angle, and Newmark displacement model SR08_1 by Saygili 

and Rathje (2008). The success rate percentage (%SR) of that map with regard to the Lorca 

earthquake is 38.3 %, which corresponds to 19.5 % of the total area identified as landslides 

(%TAC) and 72.4 % of correctly identified landslide areas (%GFC). Moreover, %Difference = 

52.9 % is also high. These results are quite similar to those obtained with the combination of 

factors with the highest success rate (Fig. 7), but having a slightly higher weight. We suggest 

the combination of factors with the highest weight as the best in order to obtain the 

probabilistic hazard map. 

 

In a previous study, hazard maps were obtained using deterministic procedures 

(Rodríguez-Peces et al., 2013); all variables were set to their average value and their variability 

was not taken into account. In that study, the %SR was extremely low (0.1 %) with a %TAC of 

0.1 % and 2.7 % of correctly identified landslide areas (%GFC). In addition, %Difference = 2.7 % 

is also very low. These data indicate that better results are obtained performing a probabilistic 

analysis rather than applying a deterministic one. 

 

5. Conclusions 
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This research shows that objective weights have been estimated for each branch of a 

logic-tree procedure applied to a probabilistic earthquake-induced landslide hazard analysis, 

and more specifically to a moderate seismic event, such as the 2011 Lorca earthquake in Spain. 

Moreover, the methodology used is proposed for the first time, making it possible to discard 

variables in the logic-tree procedure and quantify objective weights, unlike the usual way of 

performing this procedure (i.e., subjective weights). Therefore, the proposed method makes it 

possible to discard expert judgement as a method of assigning weights in the logic-tree 

procedure and to use objective criteria instead, if the required input data are available. The 

case studied here has the advantage of involving failures of a similar type (falls and shallow 

disrupted slides) that affected a reduced set of lithologies. This allowed us to assume a 

simplified mechanism of slope failure for computing critical acceleration and Newmark 

displacement values. 

 

The best model in order to produce seismic landslide hazard mapping for a moderate 

earthquake have an excellent success rate and about 72 % of correctly identified landslide 

areas (Fig. 7). This model comprises the following set of parameters: depth of failure surface of 

2 m, percentile 10 of specific weight, percentile 10 of cohesion, percentile 90 of friction angle, 

and Newmark displacement model SR08_1 by Saygili and Rathje (2008). 

 

Considering the influence of the variability of slope instability size, we have concluded 

that the node of the logic tree should have three branches (1.0, 2.0 and 3.0 m). Regarding the 

influence of the variability of geotechnical parameters, we found that it is not necessary to use 

the specific weight as a node in the logic-tree procedure and instead a fixed value of specific 

weight should be used. However, cohesion, friction angle and Newmark displacement models 

are relevant variables for consideration as nodes of the logic tree. 
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All weights objectively obtained here will represent the basis for a research in progress 

with the aim of producing earthquake-induced landslide hazard maps for moderate-low 

magnitude events (Mw < 5.5) along the main lifelines in Southern Spain, where the dry 

condition of slopes considered here are common. In addition, the proposed methodology may 

be implemented in other regions to obtain weights for each branch of the logic tree for 

seismically-induced landslide hazard studies. 
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Figures 
 

 
 
Figure 1. Location map of the study area showing only the lithological groups that were affected by 
landslides during the 2011 Lorca earthquake (red dots) and location of the in situ testing performed. 
Continuous black lines: surface traces of main active faults (Alhama de Murcia Fault, cf. García-
Mayordomo et al., 2012). Dashed line: perimeter of the area shown in figure 8. 
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Figure 2. A) Variation of peak ground acceleration (PGA) with epicentral distance for the 2011 Lorca 
earthquake. Blue line: Ground motion prediction attenuation (GMPA) according to Ambraseys et al. 
(2005) for rock sites; Red line: same for hard soil sites; Magenta line: same for soft soil sites. B) Variation 
of Arias intensity (IA) with epicentral distance according to Sabetta and Pugliese (1996). Blue line: for 
rock and hard soils sites; Red line: for shallow soft soil sites; Magenta line: for deep soft soil sites. C) 
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Newmark displacement (DN) computed for the two horizontal components of ground motion recorded 
at LOR (Lorca) station. Red line: N-S component; Blue line: E-W component. 

 

 
 
Figure 3. Some examples of landslides triggered by the 2011 Lorca earthquake, mainly disrupted ones, 
such as soil slides (top photos) and rock falls (intermediate and bottom photos). 
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Figure 4. Estimated volume of landslides triggered by the 2011 Lorca earthquake. 

 

 
 
Figure 5. Example scheme of the structure of the logic tree for a probabilistic seismic landslide hazard 
mapping assessment. 
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Figure 6. Estimated depth of the failure surface (t) of landslides triggered by the 2011 Lorca earthquake. 

 

 
 
Figure 7. Parameter set efficiency referring to the models for seismic landslide hazard mapping 
assessment. The percentage of landslide areas correctly identified (%GFC) for each set of parameters is 
shown on the x-axis. Y-axis shows the efficiency difference between the percentage of landslide areas 
correctly identified (%GFC) and the percentage of total area identified as landslides (%TAC). The 
optimum model corresponds to the model with greatest value of %GFC - %TAC. The best model is the 
one with the greatest total weight in the logic-tree procedure. 
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Figure 8. Excerpt of certain seismic landslide hazard maps obtained in the logic-tree procedure 
considering the occurrence of a moderate magnitude earthquake. a. Map showing the optimum model 
with the highest success rate (%SR). b. Map with the highest percentage of landslide areas correctly 
identified (%GFC). c. Map showing the best model with the highest total weight. Slope instabilities 
triggered by 2011 Lorca earthquake are depicted as black circles. 
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Figure 9. Distributions of success rate (%SR) considering the variability of the different variables used in 
the logic tree. Central lines denote the median values (50 percentile), the edges of the box mark the 
percentiles 25 and 75, and the tips of the whiskers represent the minimum and maximum values. 
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Figure 10. Distributions of weights considering the variability of the different variables used in the logic-
tree procedure. Lines show the normal distribution fitting. 
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Table 1. Values of strength parameters for rock-type lithological groups. t: depth of the failure surface 
(m); ϒ: specific weight (kN/m

3
); c: cohesion (kPa); Φ: friction angle (°). 

 

 

Calcareous sandstones 
and limestones 

Conglomerates, 
sandstones and 

argillites 
Phyllites and quartzites 

ϒ c Φ ϒ c Φ ϒ c Φ 

t = 0.5 

Low 23.05 0.00 26 21.19 0.00 26 23.54 0.00 26 

Most likely 23.57 0.07 32 22.84 0.11 32 23.79 0.08 32 

High 24.60 0.17 39 23.89 0.30 43 24.23 0.27 42 

t = 1.0 

Low 23.05 0.00 26 21.19 0.00 26 23.54 0.00 26 

Most likely 23.57 0.13 31 22.84 0.20 31 23.79 0.14 32 

High 24.60 0.31 38 23.89 0.54 43 24.23 0.51 41 

t = 2.0 

Low 23.05 0.00 26 21.19 0.00 26 23.54 0.00 26 

Most likely 23.57 0.23 31 22.84 0.36 31 23.79 0.26 31 

High 24.60 0.57 37 23.89 0.97 41 24.23 0.91 40 

t = 3.0 

Low 23.05 0.00 26 21.19 0.00 26 23.54 0.00 26 

Most likely 23.57 0.33 31 22.84 0.50 30 23.79 0.37 31 

High 24.60 0.80 37 23.89 1.36 40 24.23 1.29 39 

 
 
Table 2. Values of strength parameters for soil-type materials. ϒ: specific weight (kN/m

3
); c: cohesion 

(kPa); Φ: friction angle (°). 

 

 

Marls and gypsums 

ϒ c Φ 

Low 16.52 0.00 15 

Most likely 17.95 15.75 21 

High 20.37 30.63 28 

 
 
Table 3. Newmark displacement models used in this study. Newmark displacement (DN) is in cm, PGA 
and ky are in g units (1 g = 9.81 m/s

2
), IA is in m/s, and M is the moment magnitude. 

 
Model Relation Reference 

J07_1                [(  
  

   
)

     

(
  

   
)

      

] Jibson (2007) 

J07_2                 [(  
  

   
)

     

(
  

   
)

      

]         Jibson (2007) 

J07_3                                   Jibson (2007) 

J07_4                          (
  

   
)        Jibson (2007) 

BT07 
                         (    )

 

                               (     )
 

      (   ) 

Bray and 
Travasarou 

(2007) 

SR08_1 

    

          (
  

   
)       (

  

   
)

 

       (
  

   
)

 

       (
  

   
)

 

           

Saygili and 
Rathje (2008) 

SR08_2 

    

          (
  

   
)       (

  

   
)

 

       (
  

   
)

 

       (
  

   
)

 

                    

Saygili and 
Rathje (2008) 
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RS09 

    

          (
  

   
)       (

  

   
)

 

       (
  

   
)

 

       (
  

   
)

 

               (   ) 

Rathje and 
Saygili (2009) 

HL11                                            
Hsieh and Lee 

(2011) 

JL18                                                
Jia-Liang et al. 

(2018) 

 

 
Table 4. Variation of the success rate (%SR) considering the variability of Newmark displacement 
regression models. 
 

DN model J07_1 J07_2 J07_3 J07_4 BT07 SR08_1 SR08_2 RS09 HL11 JL18 

Maximum %SR 22,92 27,09 34,14 37,14 36,97 38,28 38,23 38,45 38,07 35,66 

Median %SR 10,62 10,61 16,86 18,88 12,43 12,39 18,90 19,18 16,23 17,70 

Mean %SR 11,81 13,51 18,94 18,96 16,95 17,62 19,00 18,97 18,20 18,06 

 
 
Table 5. Weights obtained for different Newmark displacement regression models in the logic-tree 
procedure. 

 
DN model J07_1 J07_2 J07_3 J07_4 BT07 SR08_1 SR08_2 RS09 HL11 JL18 

Mean Weight 0,0669 0,0803 0,1133 0,1116 0,0946 0,1000 0,1114 0,1113 0,1050 0,1056 

Median Weight 0,0673 0,0789 0,1149 0,1119 0,0928 0,0990 0,1115 0,1110 0,1058 0,1069 
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Highlights 
 
- A new method to obtain unbiased logic-tree weights in a probabilistic earthquake-induced 
landslide hazard analysis. 
- Influence of different variables and uncertainties in the resulting earthquake-induced 
landslide hazard maps. 
- An improvement of the well-known Newmark method is proposed. 
- The obtained weights can be applied to seismically-induced landslide hazard maps 
assessments in low to moderate magnitude seismic areas. 
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