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Abstract

In this study, an inventory of landslides induced by the 2011 Lorca earthquake (M,, 5.1) has

been used in order to develop a new procedure to obtain objective logic-tree weights for a

probabilistic earthquake-induced landslide hazard analysis. The 2011 Lorca earthquake

triggered more than 250 landslides, mainly of disrupted type. The logic-tree was designed



having regard to variability of relevant geotechnical parameters involved in the problem and
uncertainties associated with the use of several empirical relationships in order to compute
Newmark displacements. For the purpose, the resulting hazard maps were compared with this
landslide inventory, and weights estimated for each branch of the logic tree based on these
results. The best model for seismic landslide hazard mapping for a moderate earthquake
correctly identifies around 72 % of landslide areas. Based on the set of parameters that
comprises (depth of failure surface, specific weight, cohesion, friction angle and Newmark
displacement model), the corresponding weights were objectivey ~stablished. These weights
are reliable enough for the obtaining seismic landslide hazar n.~=5 and may be implemented

in similar environments characterized by moderate-low r. 3.gnitude earthquakes (M,, < 5.5).

Keywords: landslide, earthquake, seismically-inc ic z:d landslide, hazard map, logic tree.

1. Introduction

The occurrence of ear.~quake-induced landslides represents a relevant contribution to
seismic risk (Bird and 3omier, 2004). Producing hazard maps to delineate areas prone to
earthquake-induced lanslides is likely the best way to address this issue in our societies.
Although several methodologies have been proposed for the production of such maps
(Wieczoreck et al., 1985; Luzi et al., 2000; Mulas et al., 2001; Del Gaudio et al., 2003; Jibson,
2011; Rathje and Antonakos, 2011), the method proposed by the United States Geological
Survey (Jibson, 1993; Jibson et al., 2000) has been the most widely used in the last two
decades. More recently, a new approach, called PARSIFAL (Probabilistic Approach to pRovide
Scenarios of earthquake-Induced slope FAilLures), has been proposed (Esposito et al, 2016).

This methodology considers different failure mechanisms. It allows comprehensive mapping of



earthquake-induced landslide scenarios in terms of exceedance probability of critical threshold
values of co-seismic displacements. In the analysis, first-time landslides (due to both rock-
slope failures and shallow earth-slides) and reactivations of existing landslides are also
considered. PARSIFAL was applied in the framework of seismic microzonation studies in Italy
after the 2016-2017 destructive seismic sequence in the Central Apennines (Martino et al.,
2019). The methodologies for producing earthquake-induced landslides hazard maps are
based on the concept of sliding rigid block (Newmark, 1965) and compute the accumulated
displacement of the slope once the earthquake is over (also knowr, °s Newmark displacement)
through two integrations. Seismic acceleration is integrat~a “~ obtain velocity for those
portions of the accelerogram record where the accelera: nn overcomes the yield acceleration
(k,) in slope stability, and then velocity is integrateu *o obtain displacement. Alternatively,
displacements may be computed from empiri:a' r:lationships that take into account the
severity of shaking (earthquake magniti'ae, pec.'s ground acceleration —-PGA—, peak ground
velocity —PGV—, Arias intensity —l,— etc.) a..d the yield acceleration in slope stability. The
success of this methodology comes frv.1. “he fact of merging quantitatively the main factors of
the problem in a Geographic .. formation System (GIS) environment: geometry of slopes,
geotechnical parameters of sic ~e materials, and severity of seismic ground motion. This allows
for the rapid productic 1 of hazard maps. This methodology has proved to be very useful for
studying the occurrence of small, shallow and disrupted landslides (Jibson et al., 2000; Jibson
and Michael, 2009) which is the typology of landslides more frequently induced by

earthquakes (Keefer, 1984; Delgado et al., 2011).

The Newmark sliding block methodology has several limitations in relation to the
difficulty of incorporating the uncertainties/variability of the three types of variable used in
our analysis. As for small sized landslides (such as rock slides and falls), Rodriguez-Peces et al.

(2011) showed that the resulting Newmark displacements vary highly depending on the spatial



resolution of the digital elevation model (DEM) used to obtain the relief: low resolution DEMs
tend to smooth the relief, resulting in high safety factors and vyield accelerations, and,
moreover, lower Newmark displacements. These authors suggest the use of high resolution
DEMs, with pixel size similar to or slightly greater than the size of slope instabilities expected

to be induced by earthquakes.

The geotechnical properties of geological materials are another source of limitation.
They usually are characterized by inherent variability (Phoon an.' Kulhawy, 1999). McCrink
(2001) and Dreyfus et al. (2013) studied the effect of stren-th ~=rameters variability on the
resulting hazard maps. They compared the resulting ma; s with the inventories of seismically
induced landslides of the 1989 Loma Prieta (M,, = <R, and 1994 Northridge (M,, = 6.7)
earthquakes, both located in California (USA! “hose authors found that maps correctly
captured only part of the observed land.ius. "he proportion of correctly captured ground
failures increased when the strength barame.ers were reduced, but at the cost of excessively
increasing the total area of predi tea 'undslides (increasing the size of zones with higher
hazard categories). Another re. ted limitation of the present methodology stems from an
inability to include spatial v.-iability of strength parameters within the same geological

formation (Dreyfus eta , 20'3).

Several authors have proposed empirical relationships in order to estimate Newmark
displacements (Jibson et al., 2000; Bray and Travasarou, 2007; Jibson, 2007; Saygili and Rathje,
2008; Chousianitis et al., 2016; among others). The use of different relations leads to different
displacements. Du et al. (2018) studied the uncertainty associated with the use of different
empirical relations. These authors prove that uncertainties are greater for those relations
based on a single ground motion parameter (PGA, PGV or I,) when compared with those that

consider multiple ground motion parameters (usually two). Dreyfus et al. (2013) show that the



results of a given model depend less on the Newmark displacement relationship and ground

motion parameters of the earthquake than on the strength parameters used.

Monte Carlo simulations have been used to manage the variability of variables (Refice
and Capolongo, 2002; Murphy and Mankelow, 2004), although the high volume of data
required limits use of this approach. Rathje and Saygili (2009) propose the use of the logic-tree
methodology instead. This methodology is widely used in seismic hazard studies (Kulkarni et
al., 1984; Bommer and Scherbaum, 2008; Delavaud et al., 2012; 1CN, 2017; among others). A
set of nodes form a logic-tree, with one node for each variab.~ Jf the problem. From each
node, several branches depart representing the discrete . 2lues that the corresponding variable
can take. Each branch is characterized by its weight the* re/lects its relative relevance from the
analyst’s point of view. The sum of the weights or.e ponding to the branches of each node is
always one. The end branches of the los.c .-ee veight are the product of its path branches
weights. The result of a logic-tree sti'dy is ou.ained as the weighted summation of the results
obtained at the n-branches of the mudl ~i. Finally, a hazard value is estimated for each path
through the logic-tree, with the otal weighting of each hazard value being the product of the
individual branch weights. Ww~ng and Rathje (2015) used the logic-tree methodology to

incorporate the variabil ty in strength parameters of materials in an area.

The main problem when using this logic-tree methodology is how weights are
estimated/set for each branch. Several possibilities are found in literature: sometimes they are
based on an expert judgement or subjective considerations derived from available information
(e.g. IGN, 2017) and sometimes they are set based on probabilistic models (e.g. Wang and

Rathje, 2015). At present, there is no proper method to set weights objectively.



In this study, we have worked with the inventory of landslides induced by the 2011
Lorca earthquake with M,, 5.1 that triggered far more slope instabilities than any other
instrumental earthquake recorded in Spain (Alfaro et al., 2012; Rodriguez-Peces et al., 2013).
We have used the well-known data of this event (magnitude, ground motions, landslides
location, and geotechnical parameters) to analyze the efficiency of the seismically-induced
landslide hazard maps obtained using a logic tree. This tree was designed in order to consider
variability of geotechnical parameters and uncertainties associated with the use of several
empirical relationships to compute Newmark displacement. 1.~ aim is to compare the
resulting hazard maps with the available landslide inventor’ a. ~ propose a new method to
estimate objectively weights for each branch based on {' ose results. These weights will form
the basis for research in progress with the aim of prou.'cir.g seismic landslide hazard maps for

moderate-low magnitude events (M,, < 5.5) alon 1 t"1e main lifelines in Southern Spain.

2. The 2011 Lorca earthquake

The Lorca earthquake .-curted on May 11, 2011, at 6:47 pm (local time) with a
magnitude of M,, 5.1 (IGN. 20."). It had a focal depth of 4 km and it was located at less than 5
km NE of the city of Lc*ca { Viurcia, SE Spain). It was preceded by a M,, 4.5 foreshock at 5:05
pm (local time) and follswed by multiple low magnitude (My< 4.0) aftershocks. This seismic
event caused nine fatalities, and damaged more than 1000 buildings causing economic losses
of more than 1200 million euros (following Martinez-Diaz et al., 2012). The event occurred in a
segment of the Alhama de Murcia Fault, the main active fault in the area (Fig. 1). This fault
accommodates a fraction (around 0.1-0.6 mm/yr) of the approximately 5 mm/yr on the

convergence along the Nubian and Eurasian plates boundary (Masana et al., 2004).



The local ground motion caused by this seismic event was recorded by the
accelerograph stations of the Spanish strong ground motion network, managed by the Spanish
Instituto Geografico Nacional (IGN). Unfortunately, only one station was located within the
epicentral area, where all induced landslides occurred (Fig. 1). Peak ground acceleration (PGA)
reached a value of 0.36 g (N-S component) at LOR station (see location in Fig. 1), although PGA
varied significantly between horizontal components (Fig. 2a) due to directivity effects (Lopez-
Comino et al., 2012). Average PGA values (computed as geometric mean) varied from 0.24 g at
LOR station to less than 0.05 g at stations located 20 km (or more; . "om the epicenter. Average
horizontal Arias Intensity (l) varied between 0.24 m/s at LOPR <t.*~n and less than 0.02 m/s at

distances above 20 km (Fig. 2b).

Newmark displacements have been corp'.ted (Fig. 2c) from accelerograms recorded
at LOR station following the algorithm d :sc ibe' by Jibson (1993). k, values are fixed (0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.08, ¢ 10, 0.1..5, 0.15, 0.20, 0.25 and 0.30 g) and thereafter
cumulative displacement was comg ut :. 'y integration of those parts of accelerograms where

ground acceleration was greater “han these yield acceleration values.

The 2011 Lorc: ea.thquake triggered more than 250 landslides (Fig. 1), mainly of
disrupted type such as rc ck/soil falls, soil slides and rock avalanches (Fig. 3). Alfaro et al. (2012)
mapped them immediately in the aftermath of the earthquake. As these authors point out, it is
not possible to discriminate which event (fore/main shock) triggered these landslides because
foreshock and mainshock occurred close in time to each other. Therefore, they were all
considered to be triggered by the mainshock. In this regard, all landslides can be considered as
first-generation instabilities, and therefore they are not the result of reactivation of prior
cases. A common characteristic of all landslides is their small size. Volume was estimated from

thickness and the area covered by debris in the deposition area. The resulting volumes show



that about 20 % of slope instabilities had very small volumes (<0.1 m?) and only 50 % of them
had volumes above 1 m® (Fig. 4). Although these sizes appear to be relatively small, many of
them caused a lot of damage and cuts on roads and infrastructures, as well as significant social

concern.

Most of inventoried landslides were developed in steep slopes involving mainly four
lithological groups (Fig. 1): 1) Calcareous sandstones and limestones; 2) conglomerates,
sandstones and argillites; 3) marls and gypsums; and 4) phyllites and quartzites (Rodriguez-
Peces et al., 2013). In addition, the Lorca earthquake took r'ac. ~iose to the start of the dry

summer season, and those lithological groups were in dry, ~onaitions (no soil/rock saturation).

The distribution of slope instabilities -e'at:d to the 2011 Lorca earthquake was
compared with prior earthquake-trigger:a ‘andslide hazard maps (Rodriguez-Peces et al.,
2013): a probabilistic map considerirg the occurrence of the most probable earthquake for a
475-year return period in the Lcrcu Tasin (M,, 5.0), and a deterministic map with the
occurrence of a M,, 5.1 earthau ke equivalent of the 2011 Lorca event. In both cases, these
authors found that the most .~equent values of Newmark displacement related to the slope
instabilities triggered Lv su:h moderate earthquakes were lower than 2 cm. These results
concur with the critical r.isplacement value of 2 cm proposed by Wilson and Keefer (1985) for

disrupted rock falls similar to the case in Lorca.

3. Methodology

3.1. Logic-tree approach



A logic-tree approach is proposed in order to incorporate the epistemic uncertainties
in the procedure for computation of earthquake-induced landslide maps, for each source of
uncertainty. The structure of the logic tree was divided into three parts having regard to the
uncertainties related to the slope instability size (i.e., depth of the failure surface),
geotechnical parameters (i.e., specific weight, cohesion and friction angle) and Newmark

displacement regression models (Fig. 5).

In the first section of this logic tree, the variability of the '2pth of the failure surface
was taken from the frequency histogram of the sliding b!~c.. ~ize according to the slope
instability inventory of the 2011 Lorca earthquake (Fig. €, The branches of the logic tree were

defined by the values of the depth of the failure surfacc t) 0f 0.5, 1.0, 2.0 and 3.0 m.

For the second section of the logs.c ee, different values of specific weight, cohesion
and friction angle were assigned tc each h.hological unit (Tables 1 and 2). These strength
parameters were derived from datz froi - 163 geotechnical boreholes and 20 direct shear tests
(68 values of specific weight. "0 values of cohesion and friction angle), as well as 114
geomechanical field survevs a, 1 14 in situ testings (544 values of cohesion and friction angle)
performed in the Lorc: are. (Fig. 1) on outcropping rock masses and soil deposits. Previous
studies on seismically ‘nduced landslides concluded that instabilities developed in rocky
materials are controlled by pre-existing fractures (Keefer, 1984). For this reason, cohesion and
friction angle values for rock-type lithological groups mostly correspond to rock-mass joints.
Then, the strength parameters of joints in rock-type materials were estimated using Barton-
Bandis failure criterion (Barton and Choubey, 1977) regarding the thickness of the fallen rock-
blocks. Nevertheless, this failure can occur through the intact material as well as pre-existing

discontinuities in relatively homogeneous materials, such as soils.



In order to include the variability of shear strength parameters in the logic-tree
procedure, Wang and Rathje (2015) used the three-point estimation of the normal distribution
that retains the mean and standard deviation of the data distribution (Keefer and Bodily,
1983). However, these authors assumed different values of coefficients of variation (mean
divided by standard deviation) due to the lack of enough data for a suitable statistical analysis.
In this work, as stated above, we have a large amount of data that has been statistically
processed using the IBM SPPS Statistic 25 statistical software (IBM Corp., 2017). Thereafter,
the most likely, low and high values of each geotechnical paramete. have been taken as 50, 10,
and 90 percentiles (Tables 1 and 2) representing respective .. ~ad p + 1.330. These values

represent the logic tree branches for this section.

As for the third section of the logic tree v e ave selected 10 Newmark displacement
empirical models from the large numbe’ o av.’lable relationships (Table 3). Here the only
models that apply to the case were used taning into account the available data on the 2011
Lorca earthquake. Specifically, we oy selected those relationships including PGA or I, as
independent variables. The use of tnis large amount of Newmark displacement regression
models can be seen as an atw. mpt to incorporate the widest possible range of displacement
values and epistemic u ceninties. This is especially relevant in the study area, since no local

displacement model is c'.rrently available.

Finally, a new software code was developed in order to obtain the landslide hazard
maps in terms of Newmark displacement considering the different branches of the logic tree
(Roman-Herrera et al., 2018). That semi-automatic code was written in Python using a
geographic information system (ArcGIS® 10 software). The code only considers areas with

slope above 10° for computing Newmark displacements.
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3.2. Procedure for obtaining weights on logic tree branches

A large number of earthquake-induced landslide hazard maps in terms of the Newmark
displacement were obtained taking into account the variability of all variables included in the
logic tree. Selecting the best parameter set and model for seismic landslide hazard mapping
was performed by comparing the locations of predicted landslides for all models with the

inventory of landslides triggered by the 2011 Lorca earthquake.

The prediction efficiency of each combination of par~-mc*~. sets and empirical models
was evaluated based on the success rate percentag. ot the estimated hazard map by
combining the efficiency parameters used by McCrink \?0C 1). Applying his procedure, a higher
level of efficiency should be found maximizing te pcrcentage of correctly identified landslide
(%GFC = % Ground Failure Capture) and r.ni nizi. g the percentage of the total area identified
as landslides (%TAC = % Total Area C~vered). Zonsidering that landslides triggered by the 2011
Lorca earthquake have been relate { o “ewmark displacements lower than 2 cm (Rodriguez-
Peces et al., 2013), failures loca.>d over areas with Newmark displacement higher than 1 cm
were considered for comouti 7 the %GFC, while %TAC was estimated considering the area
with Newmark displace men: higher than 1 cm over the total studied area. This threshold value
of Newmark displaceme 1t is related to a moderate seismic hazard category with a probability

of landslide higher than 2 % (Jibson and Michael, 2009).

Taking into account both parameters, another efficiency criterion can also be
established by maximizing the difference between %GFC and %TAC (%Difference =%GFC -
%TAC), which penalizes hazard maps that have a high %GFC value simply because they predict

a very large area with landslides (%TAC). Finally, the success rate percentage (%SR) of the

11



various hazard maps was estimated by multiplying %GFC and %Difference, and, therefore,

maps can be ordered from the highest to the lowest success rate.

The weights on logic tree branches (low, most likely and high) have been obtained
taking into account the success rate (%SR) corresponding to the variability of each variable,
fixing the value of the remaining variables. Following this procedure, the weight of each
branch is estimated from 0 to 1 in proportion to the success rates obtained for each variable.
The branch with the highest %SR is assigned the greatest weig, *: the next branch with a
smaller %SR has a lower weight, and so on. The sum of the bran_*<s weights corresponding to

the same node must be equal to one.

The final weights associated with each |in ss'ide hazard map have been calculated by
multiplying the partial weights obtained ore riou:ly for each branch from the first section of
the logic tree (i.e., depth of the fail're surtece) going through the second part (i.e., specific
weight, cohesion and friction angle) "o *he last part (i.e., Newmark displacement regression

models).

The variability ¢ f res Ilts depending on the different values for the considered variables
(landslide size, geotectnical parameters, Newmark displacement regression model) was

analyzed using the SPPS® statistical software (IBM Corp., 2017).

4, Results and Discussion

Having applied the above-described methodology, 1080 landslide hazard maps in
terms of Newmark displacement were obtained regarding the 2011 Lorca earthquake (M,, 5.1)

and the variability of all variables through the logic tree. This event occurred under dry

12



conditions of slopes. Figure 7 shows the models using the efficiency parameters as described
by McCrink (2001). In general, the percentage of correctly identified landslide areas (%GFC) is
between 24 and 86 %, while the difference between the percentage of correctly identified
landslide areas (%GFC) and the percentage of total area identified as landslides (%TAC) is

between 4 and 55 %.

The highest percentage of success rate (%SR) of any seismic landslide hazard map
regarding the Lorca earthquake is 38.5 % (optimum model in Fig. s, which corresponds to 15.1
% of the total area identified as landslides (%TAC) and 70.0 °4 ¢ ~orrectly identified landslide
areas (%GFC). In addition, %Difference = 54.9 % is alsc the nighest value. These values are
higher, especially the %Difference, than those found b, M_Crick (2001) with values lower than

38 %. Therefore, this hazard map comprises the ‘ol'ov'ing set of parameters:

- Depth of the failure surface t): 3.0 1...
- Specific weight (Y): percen ilr. . 2.

- Cohesion (c): percentile 10.

- Friction angle (®): pe. ~entile 90.

- Newmark disg 'acer yent model: RS09 by Rathje and Saygili (2009).

Previous set of parameters represents the optimum case (Figures 7 and 8a). This map
shows areas with very high seismic landslide hazard (Newmark displacements greater than 15
cm) favoring a large number of correctly predicted slope instabilities (Fig. 8a). On the other
hand, the map with the highest percentage of landslide areas correctly identified (%GFC = 85.6
%) corresponds with a very high total area identified as landslides (%TAC = 74.3 %) and very
low %Difference = 9.7 % (Figure 8b). These results are related to the weakest geotechnical

conditions with regard to slope stability. Newmark displacements greater than 10 cm should

13



have corresponded to the triggering of much larger landslides than was actually the case.
These high Newmark displacements are also a function of the extreme values of the input set
of parameters. In this regard, this map significantly overpredicts what actually happened,

being an unrealistic characterization of conditions during the earthquake.

4.1. Influence of variability of slope instability size

The variation in success rate (%SR) has been analyzed taka.> into account the depth of
the failure surface (Fig. 9a).The maximum %SR values are qiite *=ilar, regardless of depth as
the computed percentages closely range from 36.4 to 2.5 %, varying from 0.5 up to 3.0 m
depth. However, considering the median and mean va..'e<, the %SRs of the models improve as
the depth of the failure surface increases. In pa tir.ulir, the median %SRs obtained for depths
of 0.5 and 1.0 m are almost the same (1.0 . na 0.7 % respectively), while %SRs increase for
depths of 2.0 and 3.0 m (19.0 and 21 5 % respactively). Similar patterns are observed for mean
values: 14.0 % for depths of both 0.5 ~ri.! 1.0 m, and 18.3 and 22.5 % for depths of 2.0 and 3.0
m, respectively. These results 3, » consistent with a usual geotechnical behavior in relation to
slope stability. As the depth ¢° failure surface (i.e., size) of landslides increases, the effect of
cohesion decreases. Tt arefc re, if all other parameters remain constant, increasing the depth

will decrease the shear r :sistance and increase landslide susceptibility.

From a statistical point of view (t and Mann-Whitney tests), there are no significant
differences between means and medians of the SR samples of 0.5 and 1.0 m. Thus, they could
be considered together in a single branch of the logic tree instead of two. Consequently, the
node related to the variability of slope instability size could have three branches (1.0, 2.0 and

3.0 m), rather than the four initially considered.

14



4.2. Influence of variability of geotechnical parameters

The variation in success rate (%SR) has also been analyzed considering the specific
weight variability (Fig. 9b). The maximum %SR values are the same regardless of the specific
weight: 38.5 % for percentiles 10, 50 and 90, respectively. Moreover, the improvement in %SRs
is very small, with a very slight increase as regards the percentile. In particular, the median
%SRs are 13.2, 14.4 and 16.6 % for percentiles 10, 50 and 90, respectively. A similar pattern is
observed for mean values: 16.8, 17.1 and 17.8 % for percentiles 29, 50 and 90, respectively.
From a statistical point of view (t and Mann-Whitney tests), thai_ ~.e no significant differences
between mean and median values concerning %SR sai  oles for percentiles 10, 50 and 90.
Therefore, the %SR is not affected by the variability € th.e specific weight and a fixed value
should be used to perform the calculations nee le s t2 obtain the %SR (e.g., percentile 90). In
this regard, there is no need to use the sp zci.c w tight as a node in the logic-tree procedure as

initially planned.

Considering the variatic » in %SR with respect to cohesion variability (Fig. 9c), the
maximum %SR values are ver, different and they decrease as the percentile increases: 38.5,
34.3 and 20.9 % for pe cem’les 10, 50 and 90, respectively. In addition, the median %SRs are
27.1, 12.0 and 9.7 % for percentiles 10, 50 and 90, respectively. A similar pattern is observed
concerning mean values: 26.2, 15.6 and 9.8 % for percentiles 10, 50 and 90, respectively. These
results concur with usual geotechnical behavior, as increasing the cohesion will increase the
shear resistance and decrease landslide susceptibility. From a statistical point of view (t and
Mann-Whitney tests), there are significant differences between means and medians regarding
%SR samples of percentiles 10, 50 and 90. Therefore, the %SR is affected by the variability of

the cohesion and should be used as a node with three branches in the logic-tree procedure.

15



Finally, the variation in %SR with respect to the friction angle variability is shown in
Figure 9d. The maximum %SR values are quite different and they decrease as the percentile
increases: 28.0, 34.1 and 38.5 % for percentiles 10, 50 and 90, respectively. In addition, the
median %SRs are 12.4, 19.4 and 15.2 % for percentiles 10, 50 and 90, respectively. Similar
patterns are observed concerning mean values: 12.9, 19.5 and 19.3 % for percentiles 10, 50
and 90, respectively. These results also agree with a typical geotechnical behavior, as
decreasing the friction angle will decrease the shear resistance and increase landslide
susceptibility. From a statistical point of view (t and Mann-Whitney tests), there are significant
differences between mean and median values regarding %<R .-~ ples for percentiles 10, 50
and 90. Therefore, the %SR is affected by the variabilit, of wtne friction angle and should be

used as a node with three branches in the logic-tree pr.~evure.

4.3. Influence of variability of Newmark ¢ .sp ace.nent regression models

The variation in success ra e (..SR) has been analyzed (Fig. 9e) taking into account
Newmark displacement regressi. n equations. The maximum %SR values are similar regardless
of the equation, ranging from 22.9 to 38.5 % (Table 4). Model RS09 by Rathje and Saygili (2009)
is the best model with the h ghest %SR value (38.5 %). The same pattern was found taking into
account the median and mean values (Table 4). From a statistical point of view (Fisher, Kruskal-
Wallis and Mood tests), there are no significant differences between means and medians
regarding %SR samples for JO7_1 and JO7_2 models, so they could be considered to be a single
node of the logic tree rather than two. In addition, there are no significant differences
between means and medians values for the remaining equations (J07_3, J07_4, BT07, SR08_1,
SR08_ 2, RS09, HL11 and JL18 models). Therefore, they coud be simplified as a single node of
the logic tree instead of eight, applying one of the models with the highest %SR (e.g., RS09

model) to obtain the best results. Therefore, the %SR is affected by the variability of the

16



Newmark displacement regression model and should be used as a node with two branches in

the logic-tree procedure.

4.4. Weights of the variables and hazard maps

In the first part of the logic tree, the distribution of weights in each branch related to
the depth of the failure surface was taken from the frequency histogram of the sliding block
size (Fig. 6). As indicated in the previous section, the branches f the logic tree should be
simplified by depths of 1.0, 2.0 and 3.0 m. For each one, the ~ss.;~2d weights are 0.528, 0.405

and 0.067, respectively.

In the second part of the logic tree, altt o1'gt it has been pointed out that there is no
need to use the specific weight as a no.e, we Yave obtained the weights for this variable
anyway (Fig. 10a). The mean values #re very similar: 0.323, 0.330 and 0.347 for percentiles 10,
50 and 90, respectively. Equivalent 've.g s are obtained if median values are considered 0.333
for percentiles 10, 50 and 90. . ~ese results show that the three branches corresponding to
percentiles 10, 50 and 90 ha '@ the same weight (i.e., 0.333), reinforcing our proposal of

remove them from the ogic tree and therefore using a fixed value of the specific weight.

Considering the variable cohesion, mean values of the weights are quite different and
decrease as the percentile increases: 0.533, 0.281 and 0.186 for percentiles 10, 50 and 90,
respectively (Fig. 10c). Similar weights are obtained if median values are considered: 0.587,

0.227 and 0.186 for percentiles 10, 50 and 90, respectively.

As a final point on this part of the logic tree, the friction angle variable shows mean

values of the weights that are slightly different: 0.269, 0.384 and 0.347 for percentiles 10, 50
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and 90, respectively (Fig. 10b). Considering the median values, we obtain very similar weights:

0.250, 0.390 and 0.360 for percentiles 10, 50 and 90, respectively.

As for the last part of the logic tree, mean and median weights obtained by Newmark
displacement regression models are also very similar for each particular model (Table 5).
Although individual weights may seem very similar (Fig. 10d), the median values are
significantly different from each other from a statistical standpoint (Kruskal-Wallis and Mood
tests). This fact means that all of them should be taken into accou. * and cannot be simplified,
as suggested above. However, there are no significant differ=nc - (Fisher test) between mean
weights for HL11 and JL18 models, so they could be conslerea to be a single node of the logic
tree instead of two, applying the highest %SR mode. (i ~.., HL11 model) to obtain the best
results. In addition, there are no significant diffe er.ces between mean values for J07_3, J07_4,
SR08_2 and RS09 relationships. Thus, the' cc 1la . e simplified as a single node of the logic tree
instead of four, applying one of the models v.ith the highest %SR (i.e., RS09 model) to obtain
the best results. Therefore, the %SF is a. “:cted by the variability of the Newmark displacement
regression model and should b. used as a node with at least six branches in the logic-tree
procedure. These branches co.norise the J07_1, J07_2, BT07, SRO8_1, RS09 and HL11 models,
with weights of 0.120, (1144 0.170, 0.179, 0.200 and 0.188, respectively. The highest weight is
0.200, corresponding wi h model RS09 by Rathje and Saygili (2009) which, as stated above, is

the model with the highest %SR value.

The weights objectively obtained here for each branch of the logic tree are quite
different from those used by Wang and Rathje (2015). Due to the lack of sufficient input data
of the various variables, these authors assumed the three-point estimation of the normal
distribution proposed by Keefer and Bodily (1983), in which weights are fixed statistically: 0.3,

0.4 and 0.3 for the maximum (percentile90), best (percentile50) and minimum (percentile10),
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respectively. In addition, Wang and Rathje (2015) subjectively modified these weights to give

more or less relevance to some of the branches.

Taking into account all partial weights for each branch in the logic tree, the final weight
for each resulting hazard map was obtained. Having regard to the set of parameters that
comprises the above-mentioned landslide hazard map with the highest success rate (Fig. 8a),
the total weight of that map is 0.00062. However, the highest total weight is 0.00394, which
corresponds to a landslide hazard map (Fig. 8c) characterized by .~ following combination of
factors: 2.0 m depth of failure surface , percentile 10 of <ne:i¥ic weight, percentile 10 of
cohesion, percentile 90 of friction angle, and Newmark ¢ splacement model SR08_1 by Saygili
and Rathje (2008). The success rate percentage (%Sh, of that map with regard to the Lorca
earthquake is 38.3 %, which corresponds to 19 5 4 of the total area identified as landslides
(%TAC) and 72.4 % of correctly identifie s 1. nasiide areas (%GFC). Moreover, %Difference =
52.9 % is also high. These results are quite si.nilar to those obtained with the combination of
factors with the highest success ra’e + 2. 7), but having a slightly higher weight. We suggest
the combination of factors wi.n the highest weight as the best in order to obtain the

probabilistic hazard map.

In a previous <.udy, hazard maps were obtained using deterministic procedures
(Rodriguez-Peces et al., 2013); all variables were set to their average value and their variability
was not taken into account. In that study, the %SR was extremely low (0.1 %) with a %TAC of
0.1 % and 2.7 % of correctly identified landslide areas (%GFC). In addition, %Difference = 2.7 %
is also very low. These data indicate that better results are obtained performing a probabilistic

analysis rather than applying a deterministic one.

5. Conclusions
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This research shows that objective weights have been estimated for each branch of a
logic-tree procedure applied to a probabilistic earthquake-induced landslide hazard analysis,
and more specifically to a moderate seismic event, such as the 2011 Lorca earthquake in Spain.
Moreover, the methodology used is proposed for the first time, making it possible to discard
variables in the logic-tree procedure and quantify objective weights, unlike the usual way of
performing this procedure (i.e., subjective weights). Therefore, the proposed method makes it
possible to discard expert judgement as a method of assigning weights in the logic-tree
procedure and to use objective criteria instead, if the requiveu =put data are available. The
case studied here has the advantage of involving failurc of a similar type (falls and shallow
disrupted slides) that affected a reduced set of liti.~logies. This allowed us to assume a
simplified mechanism of slope failure for ccmwu’ing critical acceleration and Newmark

displacement values.

The best model in order to orud .ce seismic landslide hazard mapping for a moderate
earthquake have an excellent s> 'ccess rate and about 72 % of correctly identified landslide
areas (Fig. 7). This model com\. -ises the following set of parameters: depth of failure surface of
2 m, percentile 10 of sy ecifi - weight, percentile 10 of cohesion, percentile 90 of friction angle,

and Newmark displacen :nt model SRO8_1 by Saygili and Rathje (2008).

Considering the influence of the variability of slope instability size, we have concluded
that the node of the logic tree should have three branches (1.0, 2.0 and 3.0 m). Regarding the
influence of the variability of geotechnical parameters, we found that it is not necessary to use
the specific weight as a node in the logic-tree procedure and instead a fixed value of specific
weight should be used. However, cohesion, friction angle and Newmark displacement models

are relevant variables for consideration as nodes of the logic tree.
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All weights objectively obtained here will represent the basis for a research in progress
with the aim of producing earthquake-induced landslide hazard maps for moderate-low
magnitude events (M,, < 5.5) along the main lifelines in Southern Spain, where the dry
condition of slopes considered here are common. In addition, the proposed methodology may
be implemented in other regions to obtain weights for each branch of the logic tree for

seismically-induced landslide hazard studies.
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landslides during the 2011 Lorca earth 4yu. “e \red dots) and location of the in situ testing performed.
Continuous black lines: surface traces >f main active faults (Alhama de Murcia Fault, cf. Garcia-
Mayordomo et al., 2012). Dashed lir e: . ~rimeter of the area shown in figure 8.
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Figure 2. A) Variation of peak ground acceleration (PGA) with epicentral distance for the 2011 Lorca
earthquake. Blue line: Ground motion prediction attenuation (GMPA) according to Ambraseys et al.
(2005) for rock sites; Red line: same for hard soil sites; Magenta line: same for soft soil sites. B) Variation
of Arias intensity (l,) with epicentral distance according to Sabetta and Pugliese (1996). Blue line: for
rock and hard soils sites; Red line: for shallow soft soil sites; Magenta line: for deep soft soil sites. C)



Newmark displacement (Dy) computed for the two horizontal components of ground motion recorded
at LOR (Lorca) station. Red line: N-S component; Blue line: E-W component.

Figure 3. Some examples of landslides triggered by the 2011 Lorca earthquake, mainly disrupted ones,
such as soil slides (top photos) and rock falls (intermediate and bottom photos).
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Figure 8. Excerpt of certain seismic .a1 ‘sliue hazard maps obtained in the logic-tree procedure
considering the occurrence of a moderat » niagnitude earthquake. a. Map showing the optimum model
with the highest success rate (%SRi. b. Map with the highest percentage of landslide areas correctly
identified (%GFC). c. Map showi g .~e best model with the highest total weight. Slope instabilities
triggered by 2011 Lorca earthg''akc are depicted as black circles.
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the logic tree. Central lines denote the median values (50 percentile), the edges of the box mark the
percentiles 25 and 75, and the tips of the whiskers represent the minimum and maximum values.
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Table 1. Values of strength parameters for rock-type lithological groups. t: depth of the failure surface
(m); Y: specific weight (kN/m3); c: cohesion (kPa); ®: friction angle (°).

Calcareous sandstones Conglomerates,
. sandstones and Phyllites and quartzites
and limestones -
argillites

Y c (0] Y c () Y c ()

Low 23.05 0.00 26 21.19 0.00 26 23.54 0.00 26

t=0.5 Most likely 23.57 0.07 32 22.84 0.11 32 23.79 0.08 32
High 24.60 0.17 39 23.89 0.30 43 24.23 0.27 42

Low 23.05 0.00 26 21.19 0.00 26 23.54 0.00 26

t=1.0 Most likely 23.57 0.13 31 22.84 0.20 31 23.79 0.14 32
High 24.60 0.31 38 23.89 0.54 43 24.23 0.51 41

Low 23.05 0.00 26 21.19 0.00 26 23.54 0.00 26

t=2.0 Most likely 23.57 0.23 31 22.84 0.36 31 23.79 0.26 31
High 24.60 0.57 37 23.89 0.97 71 24.23 0.91 40

Low 23.05 0.00 26 21.19 0.00 2. 23.54 0.00 26

t=3.0 Most likely 23.57 0.33 31 22.84 0.50 N 23.79 0.37 31
High 24.60 0.80 37 23.89 1.36 40 24.23 1.29 39

Table 2. Values of strength parameters for soil-type materials. ™ specific weight (kN/m?); c: cohesion
(kPa); @: friction angle (°).

Marl- _~a gﬁums

Y —r c (0]

low | 16. | 000 | 15
Most likel | 1,95 | 1575 | 21
High |1’\37 30.63 | 28

Table 3. Newmark displacement morels 'i1c:d in this study. Newmark displacement (Dy) is in cm, PGA
and k, are in g units (1 g=9.81 m/s2 . la 1. 'nm/s, and M is the moment magnitude.

Model Relation Reference
k 2.341 k —1.438
J07_1 le=Dy = 0.215 + log (1 —ﬁ) (ﬁ) ‘ Jibson (2007)
k 2.335 k —1.478
107_2 log by, = —2.710 + log (1 - ﬁ) (ﬁ) +0.424M Jibson (2007)
J07_3 log Dy = 2.401log I, — 3.481logk, — 3.230 Jibson (2007)
k
J07_4 log Dy = 0.561logl, — 3.833log <ﬁ> —1.474 Jibson (2007)
InDy = —0.22 — 2.83Ink,, — 0.333(Ink,)* Bray and
BTO7 +0.5661nky, In PGA + 3.041n PGA — 0.244(In PGA)? Travasarou
+0.278(M = 7) (2007)
ln DN
k k, \? k, \® ky, \* Saygili and
SR08_1 =552—-443(=2)-2039(—) +4261(—2 ] —2874(=—2 ;
- (PGA) (PGA) * (PGA PGA Rathje (2008)
+0.72In PGA
In Dy
k ky, \° ky \* k, \* Saygili and
SR08_2 =239-524(—2)-1878(—=-) +42.01(-—2] —29.15(=> .
- <PGA> (PGA) * <PGA PGA Rathje (2008)
—1.56In PGA + 1.38In 1,
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ln DN
k ky, \? ky, \* ky \* Rathje and
RS09 — 489 — S\ Sy LAY ey h
4.89 — 4.85 <PGA> 19.64 (PGA> +42.49 (PGA> 29.06 (PGA> Maatviol
+0.721n PGA 4 0.89(M — 6)
HL11 log Dy = 0.847logI, — 10.62 k, + 6.587k,log 1, + 1.84 Hs'e(g Oa{‘f) Lee
s log Dy = 0.465log I, + 12.896k,log I, — 22.201k,, + 2.092 J'a'L('zaglgg'“;t al.

Table 4. Variation of the

regression models.

success rate (%SR) considering the variability of Newmark displacement

Dy model

J07_1 | J07_2 | J07_3 | J07_4 | BTO7 | SROS_1 | SRO8_2 | RS09 | HL11 | JL18

Maximum %SR | 22,92 | 27,09 | 34,14 | 37,14 | 36,97 | 38,28 38,23 | 38,45 | 38,07 | 35,66

Median %SR 10,62 | 10,61 | 16,86 | 18,88 | 12,43 | 12,39 1.,70 | 19,18 | 16,23 | 17,70

Mean %SR 11,81 | 13,51 | 18,94 | 18,96 | 16,95 | 17,62 19,70 | 18,97 | 18,20 | 18,06

Table 5. Weights obtained for different Newmark displacem :nt --zression models in the logic-tree

procedure.
Dy model 1071 | 072 | 1073 | 074 | BTO7 5.8 1| sro8 2| Rso9 | HL11 | 18
Mean Weight | 0,0669 | 0,0803

0,1133 | 0,1116 | C,U9 .6 | 0,1000 | 0,1114 | 0,1113 | 0,1050 | 0,1056

Median Weight

0,0673 | 0,0789

0,1149 | 0,1119 , O,.°?% | 0,0990 | 0,1115 | 0,1110 | 0,1058 | 0,1069
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Highlights

- A new method to obtain unbiased logic-tree weights in a probabilistic earthquake-induced
landslide hazard analysis.

- Influence of different variables and uncertainties in the resulting earthquake-induced
landslide hazard maps.

- An improvement of the well-known Newmark method is proposed.

- The obtained weights can be applied to seismically-induced landslide hazard maps
assessments in low to moderate magnitude seismic areas.
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