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In topological systems, a modulation in the gap onset near interfaces can lead to the appearance of massive
edge states, as were first described by Volkov and Pankratov. In this work, we study graphene nanoribbons in
the presence of intrinsic spin-orbit coupling smoothly modulated near the system edges. We show that this space
modulation leads to the appearance of Volkov-Pankratov states, in addition to the topologically protected ones.
We obtain this result by means of two complementary methods, one based on the effective low-energy Dirac
equation description and the other on a fully numerical tight-binding approach, finding excellent agreement
between the two. We then show how transport measurements might reveal the presence of Volkov-Pankratov
states, and discuss possible graphenelike structures in which such states might be observed.
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I. INTRODUCTION

Graphene was the first material theoretically predicted to
be a quantum spin Hall (QSH) insulator. In the proposal by
Kane and Mele [1,2], the intrinsic spin-orbit coupling (SOC)
opens a topological gap in the energy dispersion of the bulk
system, and edge states appear in nanoribbons due to the bulk-
boundary correspondence. While possible signatures of a
topological gap in graphene have been recently reported [3],
the minute size of the spin-orbit gap in pristine graphene
(≈25 μeV) complicates the observation and application of
the promising electronic and spin properties of the QSH edge
states. Two different approaches have mainly been followed
to overcome this limitation. (a) Find ways to induce a stronger
SOC in graphene, for example, by depositing heavy adatoms
on the graphene surface [4–8] or by proximity to materials
with much stronger SOC than carbon such as transition metal
dichalcogenides (TMDs) [9–15]. (b) Grow graphenelike hon-
eycomb structures made of heavier elements in groups IV and
V [16–24]. While the experimental realization of QSH physics
in these systems seems challenging, and even though there is
so far limited evidence for the existence of protected edge
states [14], the advances in the artificially induced SOC in
graphene are promising [13,25].

The experimental approaches described above are likely to
result into an inhomogeneous distribution of the strength of
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the induced SOC, with larger inhomogeneity near the sample
edges. We therefore investigate, both analytically and numer-
ically, the effects of a reduction of the SOC near the edges in
wide graphene nanoribbons, both of zigzag and armchair type.
Intrinsic SOC leads to band inversion at the K and K′ points,
and due to the smooth SOC modulation at the edges, new
massive edge states appear in addition to the topologically
protected ones. Such massive edge states were first described
by Volkov and Pankratov [26–28], and are therefore referred
to as Volkov-Pankratov (VP) states. Recently, VP states have
attracted attention again in the context of topological insu-
lators (TIs) [29–33] and topological superconductors [34].
Although VP states in TIs are not topologically protected,
they are of topological origin, because they result from
the band inversion between a topological and a trivial
material [30]. Three-dimensional TIs with band inversion
at the � point were investigated both theoretically, within
an effective linear in momentum model [30,32], as well as
experimentally, in HgTe/CdTe heterojunctions [29,31]. Other
studies focused on two-dimensional quantum wells within
the Bernevig-Hughes-Zhang model [33]. In these works the
VP states appeared due to the smooth modulations in the
band structure near the edges. Recently, the coexistence of
topological and trivial modes was also reported in 2D TMD,
specifically in the 1T ′ phase of WSe2 [24].

Within our numerical approach, in addition to the spectral
properties, we investigate the transport properties of clean
and disordered nanoribbons. In general, the conductance of
the system increases by 4e2/h every time a new VP band
opens to conduction. In disordered ribbons, the opening of
a new conduction channel via a VP state is accompanied by
the appearance of a dip in conductance. These dips resemble
the ones observed in quasi-one-dimensional quantum wires
in the presence of an attractive impurity [35]. In this context,
the decrease in the conductance is due to the coupling of
propagating modes to quasibound states in the scattering
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region. Therefore, the presence of these dips in the conduc-
tance indicates that a new subband is opened, thereby demon-
strating the existence of such bands within the topological
gap. This hints that the presence of disorder is not detrimental
to the detection of VP states in transport experiments.

This article is organized in the following way. In Sec. II, we
discuss the analytical solution for the edge mode spectrum of a
semi-infinite graphene flake with a space modulation of the in-
trinsic SOC close to the boundary, within the long-wavelength
approximation. In Sec. III, we solve for the full spectrum of
zigzag and armchair nanoribbons with the modulated intrinsic
SOC using the tight-binding model. In Sec. IV, we analyze the
transport properties within the full tight-binding description,
including the effects of disorder. Finally, in Sec. V, we present
conclusions and outlook. Some technical details are relegated
to the three Appendices at the end of the paper.

II. ANALYTICAL LOW-ENERGY APPROACH

In this section we investigate the spectrum of edge states
of graphene nanoribbons by using the Dirac equation de-
scription [36,37]. As it is well known, this emerges in the
long-wavelength approximation (LWA) of the tight-binding
Hamiltonian around the Dirac points K and K′. Within this
continuum model, we account for the presence of nonuniform
intrinsic SOC. We focus on the part of the spectrum corre-
sponding to states localized at the edges. These states decay
exponentially away from the edges in the bulk, so if the width
of the nanoribbon is much larger than their decay length, the
two edges can be treated separately. We assume that this is the
case, and study a semi-infinite system with a single edge of
either zigzag or armchair type. Our results below, therefore,
apply to wide nanoribbons, and do not account for finite-size
effects. Within the LWA approximation, graphene’s effective
Hamiltonian is given by

H = vF (τzσx p̂x + σy p̂y) + �τzσzsz, (1)

where vF denotes graphene’s Fermi velocity, p = −ih̄∇ is the
momentum operator, and {τx, τy, τz}/{σx, σy, σz}/{sx, sy, sz}
are the Pauli matrices associated to the valley/sublattice/spin
degree of freedom, respectively. Since the Hamiltonian (1) is
diagonal in valley and spin space, we will work in a basis of
given valley and spin projection:

�τ,s =
(

vA,τ,s

vB,τ,s

)
, τ, s = ±1, (2)

and we shall omit the valley and spin indices wherever there
is no risk of confusion. In Eq. (1), we include a nonuniform
intrinsic SOC with a smooth spatial modulation transverse to
the boundary:

�(ζ ) = �̄ + �0 tanh

(
ζ − ζ0

�

)
. (3)

Here, ζ represents the coordinate in the direction perpendicu-
lar to the boundary, located at ζ = 0, and the system extends
on the side of positive ζ . Equation (3) describes a domain-
wall profile centered at ζ = ζ0, with characteristic modulation
length �, and with asymptotic values given by

�i,e = �̄ ± �0. (4)

FIG. 1. (a) Sketch of the system with x and y directions. In the
analytical calculation the system is a semi-infinite half plane. In the
numerical calculations it has a ribbon geometry, attached to source
and drain leads. Depending on the orientation, it is a system with
either zigzag or armchair edges. (b) Sketch of the profile of the
space modulation of the intrinsic SOC given by Eq. (3). The system
occupies the unshaded region.

Then �i represents the SOC deep in the interior of the
nanoribbon. We assume that the modulation occurs close to
the boundary, where the SOC reduces to �̄, with ζ0 of the
order of graphene’s lattice constant a0, see Fig. 1(b).

The choice of the hyperbolic tangent profile is convenient
because it allows for an exact solution of the corresponding
Dirac equation [30,38]. However, we expect that the qualita-
tive features of the spectrum do not depend on the detailed
shape of the profile, as long as the typical length scale � of the
SOC modulation is large on the scale of the lattice constant
a0. Since this is also the condition for the validity of the LWA
employed here, throughout this paper we assume � � a0.

A. Spectral properties of zigzag ribbons

We start by considering a semi-infinite graphene flake
extending in the region y > 0, with a zigzag edge along the
x axis [see Fig. 1(a)], and SOC profile given by Eq. (3) with
ζ = y. By exploiting the translational invariance along the x
direction, the wave function can be expressed in the form

�(x, y) = eikxxψ (y), (5)

with ψT (y) = (vA, vB). Then, the Dirac equation reduces to

[τσxkx − iσy∂y + sτ�(y)σz]ψ = Eψ, (6)

where we set h̄ = 1, and measure energies in units of vF /�,
lengths in units of �, and wave vectors in units of �−1. Equa-
tion (6) admits an exact solution [30,38], whose derivation is
summarized in Appendix A. Here, we just present the result.
We introduce the notation

κi/e =
√

k2
x + �2

i/e − E2, κ̄ = κi + κe

2
. (7)

Then, in terms of the new variable u given by

u = 1
2 [1 − tanh(y − y0)],

the sublattice amplitudes can be expressed as

vα = uκi/2(1 − u)κe/2(w+ + α w−), (8)

with α = A, B = ±. The functions w±(u) satisfy a hypergeo-
metric equation (see Appendix A). Selecting the solution that
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leads to normalizable states for y → +∞ (i.e., u → 0), we
obtain

w±(u) = c± F [κ̄ ± sτ�0, κ̄ ∓ sτ�0 + 1; κi + 1; u], (9)

where F (a, b; c; z) is the ordinary hypergeometric
function [39]. Normalizability requires κi > 0, but imposes no
constraint on κe. Therefore, at fixed kx, the edge modes exist

in the energy window |E | <

√
�2

i + k2
x . Since for y → +∞

we have u ∼ e−2y, κ−1
i actually represents the decay length

of the corresponding edge mode into the bulk. The relative
factor between the two spinor components is fixed by the
Dirac equation. We find

c−
c+

= κi + sτ�i

E + τkx
. (10)

We now need to impose the appropriate boundary condi-
tion. In the case of a zigzag edge, the boundary condition
requires that one sublattice component of the wave function
vanishes at the boundary y = 0, separately for each valley and
spin [36,37]:

vα,τ,s(0) = 0, τ, s = ±1, (11)

where α = A (respectively α = B) if the boundary sites be-
long to the B (respectively A) sublattice. Using Eqs. (8)–(10),
from Eq. (11) we obtain

(E + τkx )F [κ̄ + sτ�0, κ̄ − sτ�0 + 1; κi + 1; u0]

(κi + sτ�i )F [κ̄ − sτ�0, κ̄ + sτ�0 + 1; κi + 1; u0]
=−α,

(12)

where u0 = 1
2 (1 + tanh y0). The shift y0 is important for the

comparison to the numerical tight-binding analysis, in which
the SOC profile is centered exactly at the edge of the system,
i.e., on the first line of carbon atoms [40]. In the continuum
approach, this corresponds to the choice y0 = a0/

√
3, because

y = 0 corresponds to a line of auxiliary sites, where one
imposes the vanishing of the wave function.

Before discussing the solutions of Eq. (12), we notice that
this equation is invariant under the following transformations:

τ, s, kx → −τ,−s,−kx,

E , kx, α → −E ,−kx,−α.

The first invariance is just the consequence of the time-
reversal symmetry of the Hamiltonian (1): the edge states
occur in pairs of counterpropagating modes with opposite
spins, residing on opposite valleys. The second invariance
implies that the edge state spectrum at a B-type edge can
be obtained from the spectrum at an A-type edge by simply
reversing energy and wave vector. In order to reproduce the
full spectrum of edge states (including degeneracies) of a wide
zigzag nanoribbon, which has one edge of A sites and one
edge of B sites, we need to take the solutions of Eq. (12) with
α = +1 and with α = −1. These solutions are shown in Fig. 2
as blue dots on top of the numerical results discussed in the
next sections (gray, black, and red lines). For clarity, we only
include the states at one valley; the states at the other valley
follow by symmetry.

We observe that the continuum approach faithfully repro-
duces all the main features of the spectrum close to the Dirac
points. Within the gap, there exist two topological bands with

FIG. 2. Band structure of a zigzag nanoribbon of width
Ly = 37.2 nm (150 rows), with modulation of the SOC at the
boundary. We set λi = 0.1t , λe = −0.05t , and � = 12a0. The gray,
black, and red lines are the tight-binding results, describing bulk
states, VP states, and topological states, respectively. The analytical
results from Eq. (12) are represented as blue dots. The right inset
shows the case of homogeneous SOC, with λ = 0.1t , corresponding
to a gap � = 3

√
3λ ≈ 0.52t . In both cases, two topological modes

(red lines) cross within the gap. The modulation of the SOC results
in additional massive edge states, popping up under the conduction
band and above the valence band (black lines).

approximately linear dispersion, and ten massive VP modes
(for the given values of the parameters), in agreement with
the results of the numerical approach discussed in Sec. III
below. All these levels are doubly degenerate if one considers
a system with two edges. Figure 2 shows the agreement
between analytical and numerical results. For wave vectors
in the interval between the two Dirac points, the agreement
is less satisfactory, which we attribute to the fact that the
coupling between the valleys, neglected in the continuum
approach, plays an important role at these wave vectors. This
is especially evident for the topological bands. Another source
of discrepancy stems from neglecting higher order terms in
momentum in the LWA.

B. Spectral properties of armchair ribbons

Let us now turn to the case of a semi-infinite system with
an armchair edge along the y direction [see Fig. 1(b)]. The
wave function can be written as

�(x, y) = eikyyψ (x), (13)

with ψT (x) = (vA, vB). Then the Dirac equation reduces to

[−iτσx∂x + σyky + sτ�(y)σz]ψ = Eψ, (14)

and its solutions can be written as

vA = uκi/2(1 − u)κe/2(w̃+ + w̃−), (15a)

vB = iuκi/2(1 − u)κe/2(w̃+ − w̃−), (15b)
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FIG. 3. Band structure for an armchair nanoribbon of width
Lx = 32.5 nm (128 rows), with SOC modulation near the boundary.
We set λi = 0.1t , λe = −0.05t , and � = 12a0. The gray, black,
and red lines are the tight-binding results, describing respectively
bulk states, VP states, and topological states. The blue dots are the
solutions of Eq. (20). Close to the K (K′) point (in the armchair case,
projected to k = 0), the agreement is excellent. The right inset shows
the case of homogeneous SOC with λ = 0.1t , corresponding to a gap
� = 3

√
3λ ≈ 0.52t .

where u = 1
2 [1 − tanh(x − x0)]. The functions w̃± are, again,

solutions of a hypergeometric equation, and are given by

w̃±(u) = d± F [κ̄ ∓ s�0, κ̄ ± s�0 + 1; κi + 1; u], (16)

with the relative factor, fixed by the Dirac equation, given by

d−
d+

= τ (s�i − κi )

E + ky
. (17)

Notice that the dependence on the valley index only appears
in the prefactor.

In the armchair case, the boundary condition involves both
valleys [36,37] and reads

[vα,τ=+1,s + vα,τ=−1,s]x=0 = 0, s = ±1, (18)

with α = A, B. In terms of the w̃± we find

[w̃±,τ=+1 + w̃±,τ=−1]u=u0 = 0, s = ±1. (19)

From Eq. (17) we see that either w̃−,τ=−1 = −w̃−,τ=1 or
w̃+,τ=−1 = −w̃+,τ=1; therefore, the boundary condition takes
the simple form

(E ± ky)F [κ̄ ∓ s�0, κ̄ ± s�0 + 1; κi + 1; u0] = 0. (20)

Here, u0 = 1
2 (1 + tanh x0). In the armchair system, the shift

required to have the correct value of the SOC on the first line
of carbon atoms is x0 = a0/2.

The solutions to Eq. (20) are shown in Fig. 3 as blue
dots. As in the zigzag case, in a nanoribbon all levels are
doubly degenerate, corresponding to states on both edges. The
obvious solutions E = ∓ky describe two counterpropagating
linearly dispersing topological bands. These modes only exist

if s = ∓1, respectively; otherwise, one gets the trivial solu-
tion w̃+ = w̃− = 0. The allowed value of s guarantees that
the corresponding wave function is normalizable. This is a
manifestation of the spin-momentum locking. Remarkably, in
contrast to the zigzag case, here the group velocity of the
topological modes is equal to vF and does not depend on
SOC. Moreover, we observe that, for E 
= ±ky, the boundary
condition depends on ky and E only through the combination
k2

y − E2. Therefore, we find solutions corresponding to VP
states, whose dispersion has the form

En = ±
√

M2
n + k2

y , n = 1, . . . , Nmax, (21)

where the effective masses Mn and the number of massive
states Nmax depend on the parameter values. In Fig. 3, we
compare the analytical results with the numerical ones, find-
ing an excellent agreement. Since in this case the continuum
approach incorporates the coupling between valleys in the
boundary condition, it is not surprising that the agreement is
better than in the zigzag case.

III. NUMERICAL TIGHT-BINDING MODEL

In order to be able to go beyond the low-energy approx-
imation, as well as to study the transport properties, we
now move on to a fully numerical approach within a tight-
binding formalism, which we implement using Kwant [41].
Contrary to the analytical calculation, we will here consider
a finite size system, comprised of a scattering region with
two edges, along which edge states can propagate, and a
source and a drain lead, which are seamlessly coupled to
the scattering region. We will take rather large ribbons, but
still of experimentally relevant sizes, with length L ≈ 60 nm
and width W ≈ 35 nm. For this width, which largely exceeds
the modulation length � = 12 a0 ≈ 3 nm, the electronic states
located on opposite edges do not overlap. Hence the edges
are independent, and the numerical results can readily be
compared to the analytical solution for a semi-infinite system.

A. Model and its parameters

Within a tight-binding formalism, the Hamiltonian for
graphene with intrinsic SOC reads [1,2]

H = −t
∑
〈n, m〉

s

c†
nscms + iλ

∑
〈〈n, m〉〉

ss′

νnm(sz )ss′c†
nscms′ , (22)

where c†
ns (cns) creates (annihilates) an electron with spin s

on the site n, and the symbol 〈. . .〉 (〈〈. . .〉〉) indicates sum
over nearest (next nearest) neighbor sites. In Eq. (22), the
sign νnm = ±1 depends on the orientation of the next nearest
neighbor hopping: it is positive (negative) for an electron
making a left (right) turn to the next nearest neighbor carbon
atom. The hopping parameter is t , and λ is the intrinsic SOC
parameter, which is related to the gap size as � = 3

√
3λ.

We consider the following space modulation of the intrin-
sic SOC along the coordinate corresponding to the lateral
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width of the graphene nanoribbon:

λ(ζ ) = λi + λe

2
+ λi − λe

2

×
[

tanh

(
ζ

�

)
− tanh

(
ζ − Lζ

�

)
− 1

]
, (23)

where Lζ is the width of the ribbon in the ζ direction and λi(e)

is the value of the SOC in the internal (external) region of the
ribbon, respectively. Throughout this paper, we use λi = 0.1t
and λe = −0.05t . The length scale � characterizes the size of
the spatial region over which the variation of the intrinsic SOC
takes place. This has to be compared with the three natural
length scales present in the system: the lattice constant a0,
the length scale associated to the SOC gap ξ = h̄vF/�, and
the width of the ribbon Lζ . In order to get VP states, one
has to assure � � ξ . Moreover, to resolve the smoothness of
the SOC modulation one needs � � a0, and the two edges
are independent for Lζ � �. In Appendix B we provide some
details on the relation between the parameter values in the
LWA and in the tight-binding model.

B. Spectral properties

In this section we investigate the spectral properties of
graphene nanoribbons: the band structure and the local density
of states (LDOS). The band structure for homogeneous SOC
are shown in the insets of Figs. 2 and 3. Without SOC
modulation, each edge of the system hosts two topological
states with linear dispersion, as shown in the insets in red.
The bulk states, in gray, form the conductance band (CB) and
the valence band (VB).

For the calculation of the LDOS, Kwant first calculates the
available modes in the semi-infinite source lead. These modes
are then projected onto the scattering matrix of the scattering
region.

1. Zigzag ribbons

In the zigzag case, we consider a ribbon of width
W = Ly = 37.2 nm, corresponding to 150 rows. Figure 2
shows that, due to the suppression of the SOC near the edges,
VP bands are pulled out of the CB and the VB, in symmetric
fashion. Near the K and K′ points, these VP modes push away
the topological modes, whose group velocity is thus strongly
affected. This feature can be rationalized by observing that,
from Eq. (12), one can see that the group velocity of the
topological modes close to the Dirac points depends strongly
on the gap parameters �i/e.

Near the boundary, as the SOC gets weaker, the effective
gap becomes smaller. Looking at the VP modes under the CB,
we observe that the first (lowest in energy) VP mode is the
one which lies closest to the edge and has the smallest decay
length. Each consecutive VP mode has a longer decay length
and extends deeper in the bulk, and therefore “sees” a slightly
larger effective gap.

In Fig. 4 the LDOS of the edge states is plotted at different
energies. In Fig. 4(a) there is only the topological mode, in
Fig. 4(b) there is additionally one VP mode, in Fig. 4(c) two
VP modes, etc. In the zigzag case we observe that there are
zones on the lattice with predominant A or B contributions to

FIG. 4. Local density of states at one edge of a zigzag nanorib-
bon, for A (orange) and B (blue) sublattices, summed over the spin.
On the opposite edge, A and B sublattices should be exchanged. In
the inset, the energy at which the LDOS is evaluated is indicated by
the dashed-blue line in the band structure.

the LDOS. Moreover, for each VP mode that is added, the
predominance changes sublattice.

2. Armchair ribbons

In the armchair case, we consider a ribbon of width
W = Lx = 32.5 nm, corresponding to 128 unit cells. The
band structure is shown in Fig. 3. The two Dirac points are
projected onto the same point k = 0. In the absence of SOC,
an armchair ribbon is metallic or semiconducting, depending
on its exact width [37]. In the case studied here, the ribbon is
wide enough that the semiconducting gap, which is of order
of h̄vF /Lx, is exceedingly small compared to all other energy
scales, and can be ignored. In the presence of SOC, the gap
size is then determined by the SOC strength, and there are
always two topological modes crossing the gap. With the
SOC modulation, new massive bands appear under the CB
and above the VB. However, in contrast to the zigzag case,
the dispersion of the topological bands is not affected by the
appearance of these new levels, and their group velocity is
not modified. This is consistent with the analytical solution
of Eq. (20), which gives a linear dispersion with slope vF ,
independent of the values of the gap parameters. As shown
in Fig. 3, the agreement between the analytical and numerical
results for all edge states is excellent.

In the LDOS for an armchair ribbon we see there are no
privileged A or B sublattice zones—Fig. 5. It is harder in this
case to say where on the lattice the different VP states lie. Also
in this case, we observe the expansion of the area containing
the edge states, as one consecutively adds subbands.

IV. TRANSPORT PROPERTIES

In this section we will investigate if two-terminal conduc-
tance measurements on nanoribbons with SOC modulation
near the edges could reveal the presence of VP states. Being
massive, VP states are not protected against backscatter-
ing due to disorder. We will therefore add Anderson disor-
der to the model, namely random spin-independent on-site
energies with uniform probability distribution in the inter-
val εn ∈ [−U0/2, U0/2]. The disorder Hamiltonian can be
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FIG. 5. Local density of states at one edge of an armchair
nanoribbon, for A (orange) and B (blue) sublattice, summed over
the spin, with the corresponding energy indicated in the inset as a
dashed-blue line in the band structure.

written as

HD =
∑

ns

εnc†
nscns, (24)

where the sum runs over the entire system. The topological
edge states will not be sensitive to this disorder, but the VP
states will. How much the disorder weakens the VP states
depends not only on the disorder strength, but also on the
system size. Here, we consider a sample of size L×W ≈
60×35 nm2.

A. In-gap conductance

The numerical results for the two-terminal conductance are
shown in Fig. 6. As one can expect for a system presenting in-
gap states, the conductance never decreases to zero. Here, we
have two counterpropagating doubly degenerate topological
edge states in the gap, so the minimal in-gap conductance
is 2e2/h. In the absence of SOC modulation, this is the only
in-gap contribution to the conductance. With SOC modulation
near the edges, we observe clear steps at the energies at which
new VP modes open, see upper panels of Fig. 6. Both in
the zigzag as well as in the armchair cases, these steps are
symmetric around the gap center E = 0.

In the presence of disorder, the conductance due to the VP
modes is suppressed, because those modes are sensitive to
backscattering. For strong disorder, the conductance reduces
to 2e2/h, below which it cannot descend because the topo-
logical modes are not sensitive to Anderson disorder, which
does not break time-reversal symmetry. However, in this case
the conductance in the CB and the VB is also significantly
reduced due to the disorder in the ribbon. Remarkably, within
a certain range of disorder strength, we observe dips in the
conductance at the step edges. This reminds one of the physics
of a quasi-1D quantum wire containing an impurity with an
attractive potential, where the conducting modes couple to a
quasibound state at the impurity [35].

B. Dip behavior near the steps

In the lower panels of Fig. 6, we observe a minimum at
each step in the conductance curve of the disordered system.

FIG. 6. Conductance for a clean ribbon without (gray) and with
(black) modulation of the SOC interaction for a zigzag (a) and
armchair (b) ribbon. In the case with modulation λi = 0.1t and
λe = −0.05t . The lower panels (c) and (d) are a zoom around the CB
edge, where the VP modes are, for several disorder strengths. Within
the range U0 ∈ [0.05, 0.4] clear conductance minima are observed
just before the opening of a new VP mode.

Notice that each line represents the conductance averaged
over 100 disorder configurations. Plotting single disorder
configurations (cf. Appendix C), one observes random fluctu-
ations at the plateaus, which average out over many disorder
configurations, as well as a dip at the step edges, which most
configurations have in common, and which therefore remains
in the averaged conductance. Such dips in the conductance
at the opening of new subbands were discussed in detail in a
paper by Bagwell [35,42], in which he shows how propagating
modes in a narrow wire with parabolic confinement couple to
the zero energy quasibound states of delta shaped, negative
potential impurities. Similar dips were also explored in the
context of quantum Hall states [43,44]. In the case presented
here, in the energy gap we have to deal with a quasi-1D
subsystem near the edge, with triangular confinement poten-
tial. The quasibound states can be hosted in local energy
minima that appear due to the random energy landscape. In
order to verify that we are indeed dealing with this physical
phenomenon, we have simulated a clean sample, containing
one Gaussian-shaped impurity at each edge. We investigated
the minimal requirements for observing dips in the conduc-
tance curves right at the onset of the steps. The simulations
with single impurities clearly demonstrate that the dips come
from the coupling of the propagating states to quasibound
states lying at randomly distributed energy minima on the
lattice. This can be observed in strongly confined quasi-1D
systems with an attractive impurity (negative potential). The
precise properties of the dip in the conductance depend on the
shape and strength of the impurity and other system details.
Additional information is given in Appendix C.
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Although the situation near the edges in the system pre-
sented here differs from that investigated in earlier works,
many of the physical arguments still hold [35,45]. Because
of the random energy landscape, attractive sites or regions on
the lattice may result in the appearance of quasibound states
lying just under each VP subband. As we can observe, and
as is usually the case, the evanescent state under the lowest
VP subband is a true bound state, as it does not couple to the
topological state. We therefore observe no dip before the first
step, i.e., conductance never decreases below 2e2/h. We also
observe the usual renormalization of the energy gap, which
slightly shifts the energies of the onsets of the steps, and
the value of the CB opening [46–48]. The binding energy,
defined as the difference in energy between the step edge and
the dip minimum, is therefore hard to quantify. However, we
do observe that, as disorder gets stronger, the dips become
deeper, which is in line with earlier observations. In wires
with a parabolic confinement potential and single attractive
impurities, the interaction strength between the impurity and
the various available subbands depends on the lateral position
of the impurity in the wire. For our triangular confinement
near the edge there is no symmetry around any center; how-
ever, we know where at the edge each of the modes lies and
if it can interact with the impurity. In the implementation of
our system with one single impurity at each edge, we clearly
observe how the impurity interacts with consecutive edge
states as we move it away from the edge towards the bulk of
the sample, as discussed above. A more in depth investigation
is beyond the scope of this work, but will be the subject of a
future investigation.

V. CONCLUSION AND OUTLOOK

In this work, we have investigated the appearance
of Volkov-Pankratov edge states in topological graphene
nanoribbons of zigzag and armchair type. In the presence of
intrinsic SOC which is smoothly suppressed near the edges,
the well-known QSH edge states are accompanied by multiple
massive VP states. We have demonstrated their existence by
means of two complementary methods, the exact analytical
solution of the low-energy effective Dirac equation and the
numerical tight-binding approach, finding good agreement
between the two.

Transport simulations show how the VP modes contribute
to transport, also in the presence of disorder. We observe dips
in the conductance at the onset of each VP band, which are
due to the coupling of the propagating VP states to evanescent
modes present in the random energy landscape. At sufficiently
strong disorder, the VP states are entirely suppressed, and
cease to contribute to transport.

Our results can be relevant to experimental systems in
which the intrinsic SOC in graphene is enhanced by one of the
methods mentioned in the Introduction. Both the deposition
of adatoms, as well as the proximitization with a TMD layer,
would likely give rise to an inhomogeneous intrinsic SOC,
especially at the edges of the system.

In addition to a possible implementation in graphene or
“postgraphene” materials, the presence of these VP states
accompanying the topological modes could be achieved in
systems of ultracold atoms in optical lattices. The advantage

of a realization within this platform is related to the flexibility
to control the parameters separately across a large range
compared to condensed-matter systems, where the system
parameters are generally fixed by the material properties and
by the sample geometry [49].

The time-reversal symmetric Kane-Mele model for the
QSH effect [1,2] can be thought of as a double copy of
the Haldane model [50] in which time-reversal symmetry is
broken. The implementation of the Kane-Mele model could be
achieved within the state-of-the-art technology for ultracold
atoms; the honeycomb lattice and the Haldane model have
been already realized in this context [51,52]. In practice,
the Kane-Mele model could be implemented by using an
internal atomic state as a spin degree of freedom. For each
spin, the same scheme as for the Haldane model could be
used to implement the second-next-neighbor hopping, see
Refs. [53–55]. This system would then correspond to two
copies of the Haldane model [52]. Contrary to the imple-
mentation in Ref. [56], we propose to realize a system with
a homogeneous intrinsic SOC and soft-boundary conditions,
corresponding to an inhomogeneous on-site energy profile due
to the confining potential of the atomic trap. Similar to the
results presented in this work, this scheme gives rise to a set
of VP states accompanying the topologically protected one,
but with energy symmetry breaking. A similar approach was
proposed for the case of the quantum Hall edge states [57].
Other aspects of the implementation of this model for ultra-
cold atoms require further investigation.
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APPENDIX A: SOLUTION OF THE DIRAC EQUATION
WITH INHOMOGENEOUS SOC

In order to make this paper self-consistent, in this Ap-
pendix we provide the details of the exact solution of the Dirac
equation in the presence of an inhomogeneous SOC with
hyperbolic tangent profile. The analysis follows Refs. [30,38].

1. Zigzag case

We consider first the case of a semi-infinite system with
a zigzag edge along the x direction, see Fig. 1(a). After
factorization of a plane wave in the x direction with wave
vector kx, the Dirac equation reads

{
τσxkx − iσy

d

dy
+ σzsτ [�̄ + �0 tanh(y − y0)]

}
ψ (y)

= Eψ (y), (A1)
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where we set h̄ = 1, and measure energies in units of vF /�,
lengths in units of �, and wave vectors in units of �−1. We
look for a solution on the half-line y � 0. Squaring Eq. (A1),
we obtain[

d2

dy2
+ (

E2 − k2
x − �̄2 − �2

0

) + �0(�0 − sτσx )

cosh2(y − y0)

−2�̄�0 tanh(y − y0)

]
ψ (y) = 0. (A2)

Next, we express ψ as

ψ =
(

vA

vB

)
= φ+|+〉 + φ−|−〉, vA/B = 1√

2
(φ+ ± φ−),

where |±〉 are the eigenvectors of σx, with respective eigen-
value ±1. By performing the change of variable

u = 1
2 [1 − tanh(y − y0)],

Eq. (A3) can be rewritten as[
u(1 − u)

d

du
u(1 − u)

d

du
− 1

4

[
κ2

i (1 − u) + κ2
e u

]

+ (
�2

0 − rsτ�0
)
u(1 − u)

]
φr = 0, r = ±, (A3)

where we use the notation

κi/e =
√

k2
x + �2

i/e − E2, κ̄ = κi + κe

2
.

Substituting in Eq. (A3) the ansatz

φr (u) = uκi/2(1 − u)κe/2wr (u),

we find the hypergeometric equation

u(1 − u)w′′
r + [(κi + 1) − (2κ̄ + 2)u]w′

r

−[(κ̄ + rsτ�0)(κ̄ − rsτ�0 + 1)]wr = 0. (A4)

We need to select the solution which leads to normalizable
states for y → +∞, i.e., u → 0. We find

w+(u) = c+ F [κ̄ + sτ�0, κ̄ − sτ�0 + 1; κi + 1; u], (A5a)

w−(u) = c− F [κ̄ − sτ�0, κ̄ + sτ�0 + 1; κi + 1; u], (A5b)

where F [a, b; c; z] is the ordinary hypergeometric function
[39]. Notice that F [a, b; c; z] = F [b, a; c; z]. The other solu-
tion to the hypergeometric equation does not lead to nor-
malizable states and we omit it. Since we consider a semi-
infinite system, in contrast to Ref. [30], we do not require
normalizability for y → −∞, but we need to impose the
appropriate boundary condition at y = 0, as discussed in the
main text. The relative factor between the two components is
fixed by the Dirac equation, and we find

c−
c+

= κi + sτ�i

τkx + E
= τkx − E

κi − sτ�i
.

Then, to summarize, up to an overall normalization factor, we
have

φ+ = (τkx + E )uκi/2(1 − u)κe/2 ×
F [κ̄ + sτ�0, κ̄ − sτ�0 + 1; κi + 1; u], (A6a)

φ− = (κi + sτ�i )u
κi/2(1 − u)κe/2 ×

F [κ̄ − sτ�0, κ̄ + sτ�0 + 1; κi + 1; u]. (A6b)

We observe that, since for y → +∞ we have u ∼
e−2(y−y0 ) → 0 and F [a, b; c; u] → 1, the decay of the wave
functions in Eq. (A6) is controlled by the parameter κi, which
can then be identified with the inverse decay length of the
corresponding edge state.

2. Armchair case

In the case of a semi-infinite system with an armchair edge
along the y axis, after factorization of a plane wave in the y
direction with wave vector ky, the Dirac equation reads

[
−iτσx

d

dx
+ σyky + σzsτ�(x)

]
ψ (x) = Eψ (x). (A7)

Squaring Eq. (A7), we obtain
[

d2

dx2
+ (

E2 − k2
y − �̄2 − �2

0

) + �0(�0 + sσy)

cosh2(x − x0)

−2�̄�0 tanh(x − x0)

]
ψ (x) = 0. (A8)

In this case, we express ψ as

ψ =
(

vA

vB

)
= φ+|+〉 + φ−|−〉, vA = 1√

2
(φ+ + φ−),

vB = i√
2

(φ+ − φ−),

where |±〉 denote now the eigenvectors of σy, with respective
eigenvalue ±1. Following the same steps as in the previous
subsection, we find

φ+ = d+uκi/2(1 − u)κe/2F [κ̄ − s�0, κ̄ + s�0 + 1; κi + 1; u],

(A9a)

φ− = d−uκi/2(1 − u)κe/2F [κ̄ + s�0, κ̄ − s�0 + 1; κi + 1; u],

(A9b)

with the prefactors given by

d−
d+

= E − ky

τ (s�i + κi )
= τ (s�i − κi )

E + ky
. (A10)

We mention in passing that the solution for the armchair
case can also be obtained by an appropriate π/2 rotation of
the solution for the zigzag case. Notice that while the overall
phase of the wave function is immaterial, the relative phase
between φ+ and φ− is important. Equation (A10) implies
that either φ+ or φ− has opposite signs at the two valleys,
while the other has the same sign. This observation turns out
to be important when we impose the boundary condition, as
discussed in Sec. II B.

APPENDIX B: ON THE UNITS CONVERSION BETWEEN
TIGHT-BINDING MODEL AND LWA RESULTS

As already mentioned in the main text, the SOC param-
eters in the continuum Dirac equation and in the numerical
tight-binding model are related as

� = 3
√

3λ.
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In the tight-binding model, we measure energy in units of the
hopping amplitude t , length in units of the lattice constants
a0, and the Fermi velocity is given by vF =

√
3

2
a0t
h̄ . In the

continuum, we measure energy in units of h̄vF /� and wave
vectors in units of �−1. Then, the conversion formulas are

Etb = E

t
= Ec

h̄vF
�

t
=

√
3

2

a0

�
Ec = 0.072Ec,

ktb = ka0 = k�
a0

�
= 0.083kc,

where we have inserted the value � = 12a0 used throughout
this paper. The linear relation E = h̄vF k in continuum units
becomes Ec = kc, and in tight-binding units becomes

Etb =
√

3

2
ktb = 0.87ktb.

1. Zigzag case

With the zigzag boundary along x, we have

�(y) = �̄ + �0 tanh

(
y − y0

�

)
,

where the continuum coordinate y is given by

y =
√

3na0, n ∈ Z,

and y0 = a0/
√

3. Since x = na0 (n ∈ Z), the one-dimensional
Brillouin zone in the transport direction is 0 < kx < 2π/a0.

2. Armchair case

With the armchair boundary along y, we have

�(x) = �̄ + �0 tanh

(
x − x0

�

)
,

with the continuum coordinate

x = na0, n ∈ Z,

and x0 = a0/2. In this case, the continuum coordinate in
the transport direction is y = √

3na0; thus the corresponding
Brillouin zone is |ky| < π√

3a0
. In the plots showing the tight-

binding band structure, however, the wave vectors are rescaled
in such a way that the one-dimensional Brillouin zone ap-
pears to be |ktb| < π , see Fig. 3. Therefore, when comparing
continuum and tight-binding results, it is important to take
into account this additional

√
3 rescaling factor. In particular,

the linear dispersion E = h̄vF k appears in the numerical
results as

Etb = 1
2 ktb.

APPENDIX C: CONDUCTANCE MINIMA DUE
TO BOUND STATES

In Fig. 7 we show conductance curves of single disorder
configurations. It can be seen that the dip at the conductance
step is in common to most realizations. This is because
most disordered energy landscapes have room for quasibound
states within certain local energy wells. These states, lying at
energies just under the opening of the next VP mode, couple

FIG. 7. Conductance curves for single disorder configurations
in the armchair case for U0 = 0.1t . At the conductance plateaus,
random fluctuations eventually cancel each other out, whereas the
dip near the conductance step is in common to most disorder config-
urations; therefore, it does not average out.

to the propagating mode, which therefore localizes at that
energy, thereby decreasing the conductance.

To have a qualitatively better understanding of what causes
the dips that we systematically observe in the conductance
curves for a disordered system, we have performed additional
numerical simulations. Suspecting these minima are due to the
coupling of the VP modes to quasibound states in the system,
we run simulations in the more conventional setting of a clean
nanoribbon with a single attractive impurity. In this case, we
put a single impurity on each edge, shifted away from the edge
by the same amount. This makes the impurity on each edge
interact with the same VP mode. The impurity has a Gaussian
shape

U0(ζ) = u0 e− (ζ−ζL )2+(ζ−ζR )2

2σ ,

centered at ζL = (xL, yL) on one edge and ζR = (xR, yR) on
the other edge. The impurity is therefore fully characterized
by its position, strength u0 < 0, and width σ (or variance σ 2).
As discussed in the main text, we indeed observe dips in
the conductance near the steps. How many dips we see, at
which steps, and their shape depend on the properties of the
impurities. For impurities that are very narrow, such as σ =
a0, we observe dips only at certain steps, and not at others,
depending on where the impurity lies—cf. Fig. 8(b). For wider

FIG. 8. Conductance for a clean system containing one Gaussian
shaped impurity on each edge. In (a) σ = 3a0 and in (b) σ = a0, with
u0 = −0.4t and positions xL = xR = Lx/2, and yL = 8.848a0 and
yR = Ly − yL . In (a), due to the width of the impurity, all propagating
VP modes couple to the evanescent mode at the impurity. In (b),
because the impurity potential is much narrower, certain propagating
modes do not interact with the evanescent mode at the impurity.
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impurities, such as σ = 3a0, we observe dips at all steps, as
well as other dips in the plateaus—cf. Fig. 8(a). Additional
dips can result from having multiple evanescent modes at
the impurity due to its finite width or geometrical resonance
effects. For the case of quasi-one-dimensional quantum wires,

it is also known that in the presence of Rashba SOC [58] the
dips never go all the way down to the level of the previous
conductance step, but are lifted proportional to the fourth
order in the Rashba SOC parameter [59]. A systematic study
of all these features is left to future investigations.

[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[3] J. Sichau, M. Prada, T. Anlauf, T. J. Lyon, B. Bosnjak, L.

Tiemann, and R. H. Blick, Phys. Rev. Lett. 122, 046403 (2019).
[4] C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, Phys. Rev. X

1, 021001 (2011).
[5] A. G. Swartz, J.-R. Chen, K. M. McCreary, P. M. Odenthal,

W. Han, and R. K. Kawakami, Phys. Rev. B 87, 075455 (2013).
[6] Z. Jia, B. Yan, J. Niu, Q. Han, R. Zhu, D. Yu, and X. Wu,

Phys. Rev. B 91, 085411 (2015).
[7] U. Chandni, E. A. Henriksen, and J. P. Eisenstein, Phys. Rev. B

91, 245402 (2015).
[8] K. Hatsuda, H. Mine, T. Nakamura, J. Li, R. Wu, S. Katsumoto,

and J. Haruyama, Sci. Adv. 4, eaau6915 (2018).
[9] M. Gmitra and J. Fabian, Phys. Rev. B 92, 155403 (2015).

[10] L. Wang, I. Gutiérrez-Lezama, C. Barreteau, N. Ubrig, E.
Giannini, and A. F. Morpurgo, Nat. Commun. 6, 8892 (2015).

[11] Z. Wang, D.-K. Ki, J. Y. Khoo, D. Mauro, H. Berger, L. S.
Levitov, and A. F. Morpurgo, Phys. Rev. X 6, 041020 (2016).

[12] T. Frank, P. Högl, M. Gmitra, D. Kochan, and J. Fabian,
Phys. Rev. Lett. 120, 156402 (2018).

[13] T. Wakamura, F. Reale, P. Palczynski, M. Q. Zhao, A. T. C.
Johnson, S. Guéron, C. Mattevi, A. Ouerghi, and H. Bouchiat,
Phys. Rev. B 99, 245402 (2019).

[14] J. O. Island, X. Cui, C. Lewandowski, J. Y. Khoo, E. M.
Spanton, H. Zhou, D. Rhodes, J. C. Hone, T. Taniguchi, K.
Watanabe, L. S. Levitov, M. P. Zaletel, and A. F. Young,
Nature (London) 571, 85 (2019).

[15] P. Tiwari, S. K. Srivastav, S. Ray, T. Das, and A. Bid,
arXiv:2003.10292.

[16] C.-C. Liu, H. Jiang, and Y. Yao, Phys. Rev. B 84, 195430
(2011).

[17] A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, and
D. Akinwande, Nat. Mater. 16, 163 (2017).

[18] F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R.
Thomale, J. Schäfer, and R. Claessen, Science 357, 287 (2017).

[19] J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A.
Zhao, Y. Xu, W. Duan, S.-C. Zhang, B. Wang, and J. G. Hou,
Nat. Mater. 17, 1081 (2018).

[20] F. Yang, L. Miao, Z. F. Wang, M.-Y. Yao, F. Zhu, Y. R. Song,
M.-X. Wang, J.-P. Xu, A. V. Fedorov, Z. Sun, G. B. Zhang, C.
Liu, F. Liu, D. Qian, C. L. Gao, and J.-F. Jia, Phys. Rev. Lett.
109, 016801 (2012).

[21] C. Sabater, D. Gosálbez-Martínez, J. Fernández-Rossier, J. G.
Rodrigo, C. Untiedt, and J. J. Palacios, Phys. Rev. Lett. 110,
176802 (2013).

[22] I. K. Drozdov, A. Alexandradinata, S. Jeon, S. Nadj-Perge, H.
Ji, R. J. Cava, B. Andrei Bernevig, and A. Yazdani, Nat. Phys.
10, 664 (2014).

[23] G. Li, W. Hanke, E. M. Hankiewicz, F. Reis, J. Schäfer, R.
Claessen, C. Wu, and R. Thomale, Phys. Rev. B 98, 165146
(2018).

[24] A. Pulkin and O. V. Yazyev, arXiv:1907.12481.
[25] T. Wakamura, F. Reale, P. Palczynski, S. Guéron, C.

Mattevi, and H. Bouchiat, Phys. Rev. Lett. 120, 106802
(2018).

[26] B. A. Volkov and O. A. Pankratov, Pisma Zh. Eksp. Teor. Fiz.
42, 145 (1985) [JETP Lett. 42, 178 (1985)].

[27] O. A. Pankratov, S. V. Pakhomov, and B. A. Volkov, Solid State
Commun. 61, 93 (1987).

[28] O. A. Pankratov, Phys. Usp. 61, 1116 (2018).
[29] A. Inhofer, S. Tchoumakov, B. A. Assaf, G. Fève, J. M. Berroir,

V. Jouffrey, D. Carpentier, M. O. Goerbig, B. Plaçais, K.
Bendias, D. M. Mahler, E. Bocquillon, R. Schlereth, C. Brüne,
H. Buhmann, and L. W. Molenkamp, Phys. Rev. B 96, 195104
(2017).

[30] S. Tchoumakov, V. Jouffrey, A. Inhofer, E. Bocquillon, B.
Plaçais, D. Carpentier, and M. O. Goerbig, Phys. Rev. B 96,
201302(R) (2017).

[31] D. M. Mahler, J.-B. Mayer, P. Leubner, L. Lunczer, D. Di Sante,
G. Sangiovanni, R. Thomale, E. M. Hankiewicz, H. Buhmann,
C. Gould, and L. W. Molenkamp, Phys. Rev. X 9, 031034
(2019).

[32] X. Lu and M. O. Goerbig, Europhys. Lett. 126, 67004 (2019).
[33] T. L. van den Berg, M. R. Calvo, and D. Bercioux, Phys. Rev.

Research 2, 013171 (2020).
[34] D. J. Alspaugh, D. E. Sheehy, M. O. Goerbig, and P. Simon,

Phys. Rev. Research 2, 023146 (2020).
[35] P. F. Bagwell, Phys. Rev. B 41, 10354 (1990).
[36] L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
[37] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[38] L. Landau and E. Lifshitz, Quantum Mechanics (Elsevier,

Amsterdam, 1986).
[39] NIST Handbook of Mathematical Functions, edited by F. W.

Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge
University Press, Cambridge, UK, 2010).

[40] K. Wakabayashi, K. Sasaki, T. Nakanishi, and T. Enoki,
Sci. Technol. Adv. Mater. 11, 054504 (2010).

[41] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,
New J. Phys. 16, 063065 (2014).

[42] E. Tekman and P. F. Bagwell, Phys. Rev. B 48, 2553 (1993).
[43] J. J. Palacios and C. Tejedor, Phys. Rev. B 48, 5386 (1993).
[44] R. J. Haug, Semicond. Sci. Technol. 8, 131 (1993).
[45] C. S. Chu and R. S. Sorbello, Phys. Rev. B 40, 5941 (1989).
[46] C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydło, and

C. W. J. Beenakker, Phys. Rev. Lett. 103, 196805 (2009).
[47] H. Jiang, L. Wang, Q.-F. Sun, and X. C. Xie, Phys. Rev. B 80,

165316 (2009).
[48] B. Wu, J. Song, J. Zhou, and H. Jiang, Chin. Phys. B 25, 117311

(2016).
[49] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[50] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

023373-10

https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.122.046403
https://doi.org/10.1103/PhysRevX.1.021001
https://doi.org/10.1103/PhysRevB.87.075455
https://doi.org/10.1103/PhysRevB.91.085411
https://doi.org/10.1103/PhysRevB.91.245402
https://doi.org/10.1126/sciadv.aau6915
https://doi.org/10.1103/PhysRevB.92.155403
https://doi.org/10.1038/ncomms9892
https://doi.org/10.1103/PhysRevX.6.041020
https://doi.org/10.1103/PhysRevLett.120.156402
https://doi.org/10.1103/PhysRevB.99.245402
https://doi.org/10.1038/s41586-019-1304-2
http://arxiv.org/abs/arXiv:2003.10292
https://doi.org/10.1103/PhysRevB.84.195430
https://doi.org/10.1038/nmat4802
https://doi.org/10.1126/science.aai8142
https://doi.org/10.1038/s41563-018-0203-5
https://doi.org/10.1103/PhysRevLett.109.016801
https://doi.org/10.1103/PhysRevLett.110.176802
https://doi.org/10.1038/nphys3048
https://doi.org/10.1103/PhysRevB.98.165146
http://arxiv.org/abs/arXiv:1907.12481
https://doi.org/10.1103/PhysRevLett.120.106802
https://doi.org/10.1016/0038-1098(87)90934-3
https://doi.org/10.3367/UFNe.2017.12.038307
https://doi.org/10.1103/PhysRevB.96.195104
https://doi.org/10.1103/PhysRevB.96.201302
https://doi.org/10.1103/PhysRevX.9.031034
https://doi.org/10.1209/0295-5075/126/67004
https://doi.org/10.1103/PhysRevResearch.2.013171
https://doi.org/10.1103/PhysRevResearch.2.023146
https://doi.org/10.1103/PhysRevB.41.10354
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1088/1468-6996/11/5/054504
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1103/PhysRevB.48.2553
https://doi.org/10.1103/PhysRevB.48.5386
https://doi.org/10.1088/0268-1242/8/2/001
https://doi.org/10.1103/PhysRevB.40.5941
https://doi.org/10.1103/PhysRevLett.103.196805
https://doi.org/10.1103/PhysRevB.80.165316
https://doi.org/10.1088/1674-1056/25/11/117311
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevLett.61.2015


VOLKOV-PANKRATOV STATES IN TOPOLOGICAL … PHYSICAL REVIEW RESEARCH 2, 023373 (2020)

[51] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger,
Nature (London) 483, 302 (2012).

[52] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature (London) 515, 237
(2014).

[53] N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M. A. Martin-
Delgado, M. Lewenstein, and I. B. Spielman, Phys. Rev. Lett.
105, 255302 (2010).

[54] D. Bercioux, N. Goldman, and D. F. Urban, Phys. Rev. A 83,
023609 (2011).

[55] N. Goldman, D. F. Urban, and D. Bercioux, Phys. Rev. A 83,
063601 (2011).

[56] N. Goldman, G. Jotzu, M. Messer, F. Görg, R. Desbuquois, and
T. Esslinger, Phys. Rev. A 94, 043611 (2016).

[57] M. Buchhold, D. Cocks, and W. Hofstetter, Phys. Rev. A 85,
063614 (2012).

[58] D. Bercioux and P. Lucignano, Rep. Prog. Phys. 78, 106001
(2015).

[59] A. Pascual Gil, T. L. van den Berg, V. N. Golovach, J. J. Sáenz,
and S. Bergeret (unpublished).

023373-11

https://doi.org/10.1038/nature10871
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevLett.105.255302
https://doi.org/10.1103/PhysRevA.83.023609
https://doi.org/10.1103/PhysRevA.83.063601
https://doi.org/10.1103/PhysRevA.94.043611
https://doi.org/10.1103/PhysRevA.85.063614
https://doi.org/10.1088/0034-4885/78/10/106001

