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Abstract

Recent advances in the synthesis of stable organic (open-shell) polyrad-

icaloids have opened their application as active compounds for emerg-

ing technologies. These systems typically exhibit small energy differ-

ences between states with different spin multiplicities, which are in-

trinsically difficult to calculate by theoretical methods. We thus apply

here some DFT-based variants (FT-DFT, SF-DFT, and SF-TDDFT)

on a test set of large and real-world molecules, as test systems for

which such energy differences are experimentally available, also com-

paring systematically with RAS-SF results to infer if shortcomings of

previous DFT applications are corrected. Additionally, we explore the

spin-spin contribution to the ZFS tensor, of high interest for EPR

spectroscopy, and derive the spatial extent of the corresponding (pho-

toexcited) triplet state.

Key words: organic (poly)radicals, low- and high-spin states, finite-
temperature DFT, spin-flip (TD)DFT, ZFS tensor.
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Introduction

Studying the (poly)radical character of organic molecules is a long-

standing field of research due to the many envisioned applications of these

compounds.1,2 Recent experimental developments, in ultrahigh-vacuum sur-

faces or using non-standard synthetic routes, have propelled the synthesis of

highly challenging species including classically studied carbon-rich radicals3

like triangulenes,4 graphene nanoribbons with zigzag edges,5,6 kekulenes,7

long acenes,8,9 cyclic nanobelts,10,11 etc. All these systems share a com-

plicated electronic structure, with (near-)degenerated orbitals lying within

the gap between occupied and virtual ones, leading to small exchange in-

teractions and thus close in energy low- (e.g. singlet or doublet) and high-

spin (e.g. triplet or quartet) many-body states.12 Furthermore, C-based

magnetism is gaining attention for nanographene fragments since long time

ago,13 and it has been recently demonstrated for well-defined geometrical

C-based structures, like those arising from planar conjugated hydrocarbons,

how to anticipate the spin multiplicity and energy ordering of the corre-

sponding states,14 thus complementing the Ovchinnikov’s rule15 and the

Lieb theorem.16 However, for more general situations, one should rely on

robust, accurate, and cost-effective theoretical methods, which is still a dif-

ficult task not exempted from computational limitations, especially for large

systems.17

On the other hand, the application of standard Density Functional The-

ory (DFT) methods to these (poly)radical systems is known to be affected

by some pitfalls and/or artifacts: the intrinsic one-determinantal nature of

Kohn-Sham (KS) DFT precludes to deal with orbital degeneracies, thus ne-

glecting non-dynamical or static correlation effects, and the use of a Broken-

3

Page 3 of 46

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Symmetry (BS) solution for open-shell systems introduces spin-contamination

(also scaling with size18) issues mostly affecting the energy of the low-spin

solution.19 This situation has historically prompted the development of non-

standard methods able to cope with these subtle electronic effects, namely

based on the two-body on-top pair density20–29 with a revisited interest

nowadays,30–33 the balanced coupling of ab initio and density functional

expressions,34–37 the use of natural orbitals38–40 or the specific ensemble

of pure spin states,41–43 to name just a few of the existing non-standard

methods. Another possible route is the use of fractional spin44 or orbital

occupation,45,46 mimicking the situation when multiconfigurational ab ini-

tio methods are instead employed, or spin-flip techniques,47–49 describing

target states from a high-spin reference state.

To further explore (vide infra) the applicability and accuracy of modern

DFT variants, in the search for the best trade-off between accuracy and

computational cost, we have chosen a set of large (and real-world) organic

radical compounds recently synthesized and crystallized with diverse struc-

tural motifs (see Figure 1). Note that for all of the systems selected, their

stability has allowed the original authors to perform experimental measure-

ments such as Electron Spin Resonance (ESR) or Superconducting QUan-

tum Interference Device (SQUID), among others, to extract e.g., the energy

difference between low- and high-spin states, thus allowing to bracket the

accuracy of the theoretical methods employed after the comparison with ex-

perimental results. The systems selected here (and their short names used

in the following) are: (i) substituted Blatter-like radicals50,51 (Diradical

I and II); (ii) [6]cyclo-para-phenylmethine52 (6CPPM-Mes); (iii) [n]cyclo-

para-biphenylmethines53 ([n]CPBM-Ant) with n = 3 − 6; (iv) ethynylene-
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bridged fluorenyl macrocycle54 (MC-F3A3); and (v) cyclopenta-ring-fused

oligo(m-phenylene) macrocyclic55 (8MC). Note that the DFT-based results

will also be compared with those from the Restricted-Active-Space Spin-

Flip (RAS-SF) method,56 to bracket their accuracy also for magnitudes for

which experimental results are not available.

Theoretical Methods

The FT-DFT method

The Finite-Temperature DFT (FT-DFT) method relies on the fractional

occupation of molecular orbitals induced by (near-)degeneracy effects, with

the associated density written as:

ρ(r) =
∞
∑

i

fi|φi(r)|
2, (1)

where φi(r) is a molecular spin-orbital and fi its fractional electron occupa-

tion numbers (0 ≤ fi ≤ 1). The self-consistency of the procedure is achieved

by minimizing the Gibbs electronic free energy (Gel = Eel − TelSel) of the

system at a fictitious pseudo-temperature (i.e., electronic) called Tel, with

the fi values obtained by a Fermi-Dirac distribution around the Fermi level

EF :

fi =
1

1 + e(ǫi−EF )/θ
, (2)

depending on θ = kBTel. The corresponding energy difference between the

low-spin (LS) and high-spin (HS) solutions can be calculated after impos-

ing the desired spin multiplicity, ∆E(LS − HS) = E(LS) − E(HS), with

∆E(LS − HS) < 0 indicating a favoured low-spin ground-state (antiferro-

magnetic). Note the similarities between this method and the Thermally-

Assisted-Occupation (TAO) DFT method of Chai et al.46,57

5
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Characterization of the radical character

Additionally, the set {fi, φi(r)} can be used to define a density of un-

paired electrons, that is the Fractional Orbital Density (FOD)58,59 as:

ρFOD(r) =
M
∑

i

(δ1 − δ2fi) |φi(r)|
2, (3)

where δ1 and δ2 are chosen to become (1, 1) if the single-particle energy level

(ǫi) associated with the orbital φi is lower than the energy of the Fermi level,

EF , or (0,−1) otherwise. This density also leads upon integration to a mea-

sure of the number of strongly correlated electrons, NFOD =
∫

ρFOD(r)dr,

which is a concept equivalent to the (linear) metrics introduced by Head-

Gordon,60 typically labelled as NU and obtained from natural orbital occu-

pation numbers (NOONs), i.e., the eigenvalues of the one-electron reduced

density matrix.

Complementarily, the radical character of electronic states can be quan-

tified by means of the radical indices 0 ≤ yi ≤ 1 (i = 0, 1, 2, 3). Within the

FT-DFT methodology, they can be directly assigned to the electronic occu-

pations above the Fermi level as yi = fα
LUMO+i + fβ

LUMO+i, with fσ
LUMO+i

the fractional occupation number of the lowest unocuppied LUMO+i spin-

orbital (since approximately fσ
LUMO+i + fσ

HOMO−i = 1). For systems with

a significant (poly)radical nature, the indices yi can be used to estimate

their di- or tri- (y0), tetra- or penta- (y1), hexa- or hepta- (y2), and octa-

or nonaradical (y3) character, respectively. Large indices (yi ≈ 1) indicate

high radical character, while intermediate values are indicative of moder-

ate (poly)radicaloid character. The similarity of these fractional occupa-

tion numbers with the NOONs has been recently confirmed for polycyclic

aromatic hydrocarbons,61 as well as the trend between NFOD and global
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biradical values arising from experimental measurements.62,63

The SF-DFT method

The Spin-Flip DFT (SF-DFT) method relies on the exchange of the

α and β spin blocks of the density on certain user-defined centers, thus

generating a Broken-Symmetry (BS) solution after converging the high-spin

wavefunction. The energy difference between both considered configurations

is given by ∆E(BS − HS) = E(BS) − E(HS), which can be used as a first

approximation to the energy difference between LS and HS solutions. Energy

differences between pure spin states can be estimated by the Yamaguchi’s

procedure:64–66

∆E(LS−HS) =
nS

〈Ŝ2〉HS − 〈Ŝ2〉BS
∆E(BS−HS), (4)

where nS corresponds to the 〈Ŝ2〉 difference between the ideal spin multi-

plicities, e.g., nS = 2 for a LS singlet and a HS triplet, nS = 3 for a LS

doublet and a HS quartet, etc.

The SF-TDDFT method

The Spin-Flip Time-Dependent DFT (SF-TDDFT) method is recognized

to uniformly describe excited states of single, double, and mixed excita-

tion character in molecular systems,67 and more specifically in conjugated

molecules featuring diradical or (poly)radical character,68,69 starting from

a high-spin (e.g., triplet) reference state. The formalism is based on the

(linear response) TDDFT equations for excitation energies:

[

A B
B⋆ A⋆

] [

X
Y

]

= Ω

[

1 0
0 −1

] [

X
Y

]

, (5)
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with X (Y) the set of (de-)excitation amplitudes, A and B the linear-

response matrices, and Ω the excitation energies. In SF-TDDFT, Eq. (5) is

solved for the subspace of spin-flip (α → β) operators.47 For this case, the

general expression forA andB elements simplify toAiā,jb̄ = δijδā,b̄ (ǫā − ǫi)−

Cx

(

ij|āb̄
)

and Biā,j̄b = −Cx (ib|āj̄), with Cx the weight of exact exchange

of the density functional used, i, j (a, b) refer to occupied (virtual) orbitals

(the overbar on orbital indices indicates β-spin), ǫp is the energy associated

to the KS p-spin-orbital, and (pq|st) is the two electron interaction integral

given in Mülliken’s notation:

(pq|st) =

∫

φ∗

p(x)φq(x)
1

|x− x′|
φ∗

t (x
′)φs(x

′)dxdx′ (6)

The RAS-SF method

Spin-flip methods with single spin-flip excitations70–72 are not capable

to properly describe low-spin states of molecular systems with more than

three unpaired electrons, e.g., tetraradicals. This limitation can be overcome

through the generalization of the excitation operator to multiple spin-flip

excitations, as in the RAS-SF method. In RAS-SF the orbital space of the

high-spin reference is split in three subspaces: doubly occupied (RAS1),

singly occupied (RAS2), and virtual (RAS3). The eigenstates of the RAS-

SF Hamiltonian are obtained as n-spin-flip excitations expanded in terms of

the number of holes (electrons) in the doubly (virtual) spaces:

R̂nSF = r̂nSF0 + r̂nSFh + r̂nSFp + r̂nSFhp + r̂nSF2h + r̂nSF2p + ..., (7)

where r̂nSF0 performs all possible spin-flip excitations within RAS2 and h

and p subindices indicate the number of holes and electrons in RAS1 and

8
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RAS3, respectively.

Computational details

We use a semi-local (TPSS73) and a pair of hybrid74 (TPSS0 and TPSSHH)

exchange-correlation meta-GGA functionals differing in the weight (Cx) of

the EXact-eXchange (EXX) introduced (i.e., 0% for TPSS, 25% for TPSS0,

and 50% for TPSSHH) for the FT-DFT and SF-DFT calculations reported

here. Note that the original FT-DFT method employed the TPSS funcional,

which will be respected here, but we will also complementarily explored the

dependence of the results with respect to the EXX weight. The electronic

temperature (Tel) was fixed for the FT-DFT calculations following the rec-

ommended expression Tel/K = 5000 + 20000 Cx as a function of the EXX

weight Cx.

We use the cost-effective 6-31G** (SF-DFT) and the large def2-TZVP75

(FT-TPSS) basis sets for those calculations, together with the RIJCOSX

technique76 (with the def2/JK auxiliary basis sets77) to reduce the increase

in computational cost associated to the TPSS0 and TPSSHH functionals.

The plots of the ρFOD(r) density were generated by the UCSF Chimera78

(version 1.12) package. The FT-DFT and SF-DFT calculations were done

with the ORCA (version 4.0.1.2) quantum-chemical package79 employing

ultrafine numerical integration grids (i.e., Grid6, NoFinalGrid) in all cases.

The SF-TDDFT calculations employed the collinear approximation as

implemented in the GAMESS package,80 together with the BHHLYP func-

tional81 and the cost-effective 6-31G* basis set. Note that the use of a

functional with a high Cx = 0.50 value is recommended for this kind of

9
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calculations,47,82 and that the accuracy is not expected to vary using an-

other exchange-correlation functional like TPSSHH of PBEHH (both with

the same Cx = 0.50 value than BHHLYP).83

The RAS-SF calculations have been done within the hole and electron

approximation, that is including the three first terms in the rhs of Eq. (5)

using a ROHF (Restricted Open-Shell) high-spin reference: triplet (Blatter-

like diradicals), quartet ([3]CPBM), quintet ([4]CPBM), sextet ([5]CPBM),

septet ([6]CPPM and [6]CPBM), and nonet (8MC). Further details can be

found at the Supporting Information and elsewhere.52–55 These calculations

have been done with the Q-Chem (version 5.2) program84 and the 6-31G**

basis set.

Finally, the Zero-Field-Splitting (ZFS) calculations were performed with

the ωB97X-D functional85 and the IGLO-II basis set,86 intended for com-

puting magnetic properties with high accuracy,87 together with the ’Au-

toAux’ generation procedure for auxiliary basis sets.88 The ZFS tensor was

self-consistently calculated on the basis on spin-Unrestricted Natural Or-

bitals (UNO)89 as recommended.90 The ZFS calculations were done with

the ORCA (version 4.0.1.2) quantum-chemical package79 employing a tight

threshold for convergence (i.e., TightSCF) and ultrafine numerical integra-

tion grids (i.e., Grid6, NoFinalGrid) in all cases.
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Results and discussion

Quantification of the (poly)radicaloid character.

First, we aim to evaluate the extent of the radical character, i.e., the

number of unpaired electrons (NFOD), of the considered molecular species

by means of FT-DFT calculations. The NFOD values obtained by FT-TPSS,

FT-TPSS0, and FT-TPSSHH methods are presented in Table 1 for both the

low- and high-spin states of all studied compounds. Complementarily, Fig-

ure 2 compares the calculated NFOD values for the low-spin state of all com-

pounds, from which we can recognize a close agreement between RAS-SF and

FT-TPSS results. The results discussed along this section will thus limit to

those obtained at the FT-TPSS level, with FT-TPSS0 slightly (FT-TPSSHH

largely) overestimating the RAS-SF results. Moreover, all molecules present

significant NFOD values, indicating their open-shell (poly)radical charac-

ter. The radical character is also preserved for the high-spin states, i.e.

qualitatively similar NFOD(LS) and NFOD(HS) values are found except for

Diradical I and II systems. Because fractional occupation is induced by

near degeneracy, the smaller values of NFOD for the HS state of Diradical I

and II can be rationalized by their HOMO-1/HOMO and LUMO/LUMO+1

gaps, considerably larger than those of the other systems investigated. In-

terestingly, the series of [n]CPBM-Ant (n = 3− 6) compounds is predicted

to increase their radical character as a function of their increasing size, in

perfect agreement with experimental and RAS-SF results.53

Following the agreement found between NFOD values at the FT-TPSS

and RAS-SF levels, see also Table S1, we represent in Figure 3 the topol-

ogy (real-space distribution) of the corresponding density, ρFOD(r), at the

FT-TPSS level and using the recommended threshold58,59 for the isocon-
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tour values (σ = 0.005 e/bohr3). For the Blatter-like radicals, the FOD

density concentrates on the N atoms of the conjugated backbone, and on

the nitrosyl substituents, in agreement with what one would expect from the

resonance Lewis structures of the molecules. For 6CPPM-Mes, [n]CPBM-

Ant (n = 3 − 6), and MC-F3A3 compounds we can observe how the FOD

density locates mainly at those C atoms bringing the mesityl and anthracene

substituents, respectively, acting effectively as protective synthons. For the

8MC compound we observe a delocalization of the FOD density on the non-

bridging C atoms, resembling the results found for other systems with cyclic

topologies as cyclacenes (i.e. cyclic oligoacenes91).

Radical(oid) indices.

In order to get a deeper insight into the radical nature of these com-

pounds, in the following we explore them by means of their {yi} indices.

Table 2 presents the y0, y1, y2, and y3 values for all the systems studied at

the FT-TPSS level. The Blatter-like diradicals exhibit nearly ideal diradical

character, with y0 ≃ 1.0 and yi>0 ≃ 0 for the low and high-spin T0 states.

Note that this is in agreement with the smaller NFOD values discussed in

the previous section for the HS state of these two systems. The 6CPPM-Mes

molecule holds a sizable tetraradicaloid character, with moderate y0 and y1

values for the ground-state singlet. For the [n]CPBM-Ant (n = 3 − 6) sys-

tems, we observe an increase of the number of strongly correlated electrons

as a function of their size, in agreement with the trend found for the NFOD

values. Inspection of their yi values allows to classify them as tri-, tetra-

, penta- and hexaradicaloid molecules, respectively. Finally, for the 8MC

molecule we obtain moderate values for all the y0−3 indices, indicating a

moderate octaradicaloid behaviour. Tables S2-S3 present the yi values ob-
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tained at the FT-TPSS0 and FT-TPSSHH levels, respectively, which follow

the same trend found for FT-TPSS, but with {yi} indices being systemati-

cally larger, like for NFOD values.

Energy difference between low- and high-spin states.

Table 3 presents the energy difference ∆E(LS−HS) between the low-

and high-spin states of all the systems considered, calculated at the FT-

TPSS, FT-TPSS0, and FT-TPSSHH levels. Note that, except for the Blatter-

like diradicals considered, the electronic ground-state of these systems is al-

ways the one with the lowest spin-multiplicity, thus denoted as S0 (singlet) or

D0 (doublet). Therefore, ∆E(LS−HS) refers to the S0-T1 or D0-Q1 energy

difference, respectively, and will hold a negative sign: ∆E(LS−HS) < 0.

For the Blatter-like diradicals, the triplet electronic ground-state is instead

favoured, and in these cases it should be ∆E(LS−HS) > 0 accordingly.

First of all, inspecting the evolution of values in Table 3, we can see how

the relative stabilization of the HS state with respect to the LS solution

increases with the amount of Hartree-Fock exchange, i.e., upon going from

FT-TPSS to FT-TPSS0, and to FT-TPSSHH, with the latter being system-

atically closer to experimental energy gaps. This behaviour agrees with the

benchmark studies dealing with transition metal complexes.92–94 However,

the agreement with experimental results largely differs among the set of

compounds, even looking at the FT-TPSSHH results (i.e. best estimates)

providing the lowest MSE and MUE values. For [6]CPBM or 8MC, employ-

ing any of the FT-DFT variants will lead to an error close or even less than

1 kcal/mol, commonly known as the chemical accuracy threshold. On the

other hand, for [3]CPBM and MC-F3A3 compounds the computed gaps are

a few kcal/mol too negative, even with the FT-TPSSH method. Figure 4
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compares the FT-DFT calculated values with the experimental results, for

which we can also easily observe a different behaviour for odd and even

[n]CPBM compounds. These facts, together with the spread of the results

for MC-F3A3, allow us to conclude that the FT-DFT (with the default elec-

tronic temperatures) tends to overestimate the relative stability of low-spin

(singlet or doublet) state with respect to the next higher spin state (triplet

or quartet). Energy differences can be systematically improved, to some

extend, by increasing the amount of exact exchange.

We compare next the SF-DFT and the experimental results in Table

4, also using the TPSS, TPSS0, and TPSSHH functionals to disclose the

effect of linearly increasing the exact-exchange weight. First of all, we con-

sider the FOD density as the criteria to select those atoms to flip, with the

highest density localized on them, which could also be roughly estimated by

inspecting the corresponding spin density. In this case, spin contamination

becomes a key factor and results progressively deteriorates upon increas-

ing the exact-exchange weight, contrarily to what happened with FT-DFT

methods. The (spin-corrected) energy gaps ∆E(LS−HS) keep an accuracy

similar to that obtained for the uncorrected ∆E(BS−HS) values, still with

the SF-TPSS or SF-TPSS0 methods providing the closest agreement with

experimental results (e.g., MUEs of 6.0 and 4.0–5.0 kcal/mol, respectively).

Remarkably, the SF-TPSS method provides the correct lowest-energy spin-

state for all the molecules considered, contrarily to SF-TPPS0 and especially

SF-TPSSHH. Inspecting now the SF-TDDFT results in Table 5, done with

the BHHLYP and thus comparable with TPSSHH in terms of having a sim-

ilar exact exchange proportion, we observe larger averaged errors than for

previous FT-DFT or SF-DFT methods, with a reverse state ordering for
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Diradicals I and II. The method yields too large energy differences for the

set of [n]CPBM compounds, but it keeps the correct trend of decreasing the

∆E values with increasing size.

For the sake of comparison of all these results, RAS-SF gives a MSE

(MUE) of –0.55 (0.85) kcal/mol with respect to experimental results, with

a maximum deviation of 3.2 kcal/mol and producing thus more accurate

relative energies than the investigated DFT-based methods. Actually, this

method is able to provide the chemical accuracy sought for the whole set of

compounds. Discarding the case of [6]CPPM-Mes, the MSE (MUE) would

decrease to –0.22 (0.56) kcal/mol, and thus being considerably low.

Zero-field splitting interactions

The magnetic dipole-dipole (i.e., spin-spin) interaction leads to the split-

ting of the triplet sublevels (Ms = 0,±1) even in the absence of any external

field; a physical effect described by the Zero-Field Splitting (ZFS) Hamilto-

nian:

ĤZFS = Ŝ·D̂·Ŝ = DxxŜ
2
x+DyyŜ

2
y+DzzŜ

2
z = D

(

Ŝ2
z −

1

3
Ŝ2

)

+E
(

Ŝ2
x − Ŝ2

y

)

,

(8)

with Dii the principal values of the ZFS diagonal tensor D̂, which by con-

vention are recasted as:

D = Dzz −
1

2
(Dxx +Dyy) , (9)

E =
1

2
(Dxx −Dyy) . (10)

For systems having S > 1/2, the ZFS usually dominates the spectral shape

of the Electron Paramagnetic Resonance (EPR) spectra, and thus the ab-

solute values of D and the E/D ratio determine the energies of the three
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magnetic sublevels.95 Additionally, provided that the point-dipole approxi-

mation holds, D also relates with the averaged distance (∆r) between ide-

ally localized spin densities, and can be thus used to estimate the size of the

photoexcited triplet exciton96 (see the Supporting Information for further

details). Note that in the following we will restrict the study to those sys-

tems possessing ground-state or low-lying triplet states, i.e., with an even

number of electrons.

First of all, we have thoroughly assessed the accuracy of DFT methods

to calculate the D and E parameters for the pair of systems (Diradicals

I and II) for which experimental measurements are available.51 For both

compounds it is clear that D/hc < 0 from the experimental EPR spec-

tra, thus indicating a prolate-like distribution of the spin density for the

triplet state. The sign of D indicates whether the Ms = 0 (D > 0) or

Ms = ±1 (D < 0) spin substrates are the lowest energy states at zero ex-

ternal fields. However, previous results at the B3LYP/EPR-II level,51 and

with different exchange-correlation functionals and basis sets (see Tables S4-

S5), predicted the wrong sign for Diradical II (D/hc > 0), which is properly

characterized only by certain range-separated functionals (i.e., ωB97X-D85

and LC-BLYP97) together with basis sets suited for electric and magnetic

properties, i.e. IGLO-II or EPR-II, previously applied98 to the study of

spin-spin contributions to the ZFS tensor in organic radicals too.

This deficiency of DFT methods has also been documented before99,100

and prompted us to apply in the following the ωB97X-D functional for con-

sistency. Note also that the range-separated CAM-B3LYP functional101 was

also used but did not bring the correct sign of D for Diradical II. The main
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difference between the ωB97X-D/LC-BLYP and CAM-B3LYP schemes is a

relatively large (35%) fixed DFT exchange contribution in the latter, and

thus a maximum screened exact exchange of 65%, which seems to corrob-

orate the importance of that variable part (80% and 100% for ωB97X-D

and LC-BLYP, respectively). On the other hand, looking again at Tables

S4-S5, the relative error for the calculation of E was found larger than for

D, in agreement with previous applications to heavy-atoms coordination

complexes.102

Table 6 presents the D, E, and ∆r calculated values (at the ωB97X-

D/IGLO-II level) for the lowest triplet state of the set of compounds studied.

Interestingly, for the Diradicals I and II, a high-spin ground-state together

with a negative D could lead to effective molecular magnets.13 In the case

of 8MC, we can see how E = 0 due to the perfect axial symmetry of this

compound, with E being considerably lower than D as expected in all other

cases. Inspecting the ∆r values, i.e., the mean inter-spin distance in a dipole-

dipole approximation, see the Supporting Information for further details

about the explicit derivation, we can see how it decreases with the system

size; a fact also documented before for linear polyenes and polyacenes.103

This is rationalized by the dependence D ∝ r−3 with r the distance between

the spins of the unpaired electrons. We can also compare these results with

the estimated exciton size (∆r) for the triplet ground-state of 2,6,10-Tri-

tert-Butyltriangulene,104 around 5.6 Å, or for the photoexcited triplet state

of tetracene and pentacene,105 around 3.8 Å, or for the photoexcited triplet

state of B- and N-doped nanographenes,106 around 4.4-5.2 Å depending on

their size.
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Conclusions

We report here a benchmark study of a set of real-world (poly)radicaloids,

focusing on the extent of the radical character, spatial distribution of the

unpaired electrons, and singlet-triplet (or doublet-quartet) energy difference

obtained with different electronic structure methods. Current research on

organic (poly)radicaloid character and its applications has prompted the ap-

plication here of both (cost-effective) DFT-based and RAS-SF methods, with

the latter method behaving more accurately than the others as compared

with reference experimental results. Complementarily, we have systemati-

cally compared finite-temperature (FT-DFT) and spin-flip approaches (SF-

DFT and SF-TDDFT) with various exchange-correlation functionals, mostly

differing in their exact exchange weight, to disentangle the effect of the un-

derlying expression as well as the effect of the spin-contamination intro-

duced. The use of any of these approaches with a meta-GGA form (i.e.,

TPSS) is less costly than using a hybrid expression, but errors calculated

at the FT-TPSSHH or SF-TPSS0 level are lower than those calculated with

the corresponding non-hybrid versions (i.e., FT-TPSS or SF-TPSS). Finally,

we have also calculated the ZFS parameters for the triplet states of the com-

pounds, as well as their exciton size. Overall, we have shown how the cost-

effective characterization of (poly)radicaloid nature in conjugated organic

compounds is still a challenging issue, precluding the blind application of

DFT variants.
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The Supplementary Material contains in this order: (i) the metrics er-

ror used to compare the performance of the different methods; (ii) NU and

∆E(LS−HS) values obtained at the RAS-SF level for all the compounds;

(iii) calculated radical indices (yi) at the FT-TPSS0 and FT-TPSSHH levels

for all the compounds; (iv) comparison between calculated and experimen-

tal EPR parameters for Diradicals I and II; (v) notes on the theoretical

estimates of the exciton size and the sign of the D-tensor; (vi) cartesian

coordinates of all the compounds.
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[35] Gräfenstein, J.; Cremer, D. The Combination of Density Func-

tional Theory with Multi-Configuration Methods–CAS-DFT. Chemi-

cal Physics Letters 2000, 316, 569–577.

[36] Nakata, K.; Ukai, T.; Yamanaka, S.; Takada, T.; Yamaguchi, K.

CASSCF Version of Density Functional Theory. International Jour-

nal of Quantum Chemistry 2006, 106, 3325–3333.

[37] Pijeau, S.; Hohenstein, E. G. Improved Complete Active Space Con-

figuration Interaction Energies with a Simple Correction from Den-

sity Functional Theory. Journal of Chemical Theory and Computation

2017, 13, 1130–1146.
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Figure 1: Chemical structures of the investigated compounds
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Figure 2: Comparison between FT-DFT and RAS-SF NFOD values for the
low-spin state of the set of studied compounds.
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Figure 3: FOD density plots (σ = 0.005 e/bohr3) obtained from the FT-
TPSS/def2-TZVP method for the set of studied compounds.
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Figure 4: Comparison between ∆E(LS−HS) (kcal/mol) computed (FT-
DFT) and experimental values for the set of studied compounds.
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Figure 5: Comparison between ∆E(LS−HS) (kcal/mol) computed (SF-
DFT) and experimental values for the set of studied compounds.
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Table 1: NFOD values obtained at different theoretical levels.

FT-TPSS FT-TPSS0 FT-TPSSHH

Compound GS NFOD(LS) NFOD(HS) NFOD(LS) NFOD(HS) NFOD(LS) NFOD(HS)

Diradical Ia T0 2.15 0.81 2.68 1.44 3.43 2.23

Diradical IIa T0 2.15 0.79 2.64 1.42 3.31 2.10

[6]CPPM-Mes S0 2.13 2.90 4.24 4.82 6.75 7.24

[3]CPBM-Ant D0 2.62 2.78 4.68 4.78 6.91 6.99

[4]CPBM-Ant S0 3.14 3.70 6.00 6.43 9.09 9.44

[5]CPBM-Ant D0 4.26 4.61 7.71 7.95 11.46 11.66

[6]CPBM-Ant S0 5.10 5.50 9.37 9.63 14.00 14.17

MC-F3A3 D0 3.30 3.13 5.53 5.37 7.91 7.73

8MC S0 4.18 4.34 5.98 5.93 7.52 7.36

a Note that for these systems the header classification do not apply, since the ground-state is already
the T0 and thus the HS state.

40

Page 40 of 46

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 2: Calculated radical indicesa (yαi )
by the FT-DFT method at the TPSS/def2-
TZVP level.

Compound yα0 yα1 yα2 yα3

Diradical I 0.49 0.03 0.02 0.00

Diradical II 0.49 0.03 0.00 0.00

[6]CPPM-Mes 0.24 0.22 0.04 0.00

[3]CPBM-Ant 0.35 0.08 0.08 0.08

[4]CPBM-Ant 0.28 0.21 0.06 0.06

[5]CPBM-Ant 0.31 0.29 0.08 0.08

[6]CPBM-Ant 0.34 0.28 0.21 0.06

MC-F3A3 0.46 0.07 0.07 0.06

8MC 0.30 0.30 0.21 0.21

a Note that yαi = yβi .
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Table 3: Energy difference (kcal/mol) between the low-spin (LS) and high-
spin (HS) states, ∆E(LS−HS), obtained at the FT-DFT level.

Compound GS FT-TPSS FT-TPSS0 FT-TPSSHH Exp.

Diradical I T0 –10.04 –5.29 0.15 0.50±0.02

Diradical II T0 –10.08 –5.40 –0.06 1.74±0.07

[6]CPPM-Mes S0 –8.36 –6.50 –5.42 –6.23±0.78

[3]CPBM-Ant D0 –13.63 –10.99 –9.02 –3.5

[4]CPBM-Ant S0 –6.00 –4.45 –3.65 –2.8

[5]CPBM-Ant D0 –8.42 –6.68 –5.36 –2.4

[6]CPBM-Ant S0 –3.54 –2.84 –2.30 –2.2

MC-F3A3 D0 –13.40 –11.62 –10.16 –2.10

8MC S0 –3.98 –3.44 –2.60 –3.08

MSE –6.4 –4.1 –2.0

MUE 6.4 4.1 2.3

MIN 0.9 0.4 0.4

MAX 11.8 9.5 8.1
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Table 4: Energy difference (kcal/mol) between the Broken-Symmetry (BS) and high-spin (HS) states, ∆E(BS−HS), and the corre-
sponding ∆E(LS−HS) corrected, obtained at the SF-DFT level.

SF-TPSS SF-TPSS0 SF-TPSSHH

Compound GS ∆E(BS−HS) ∆E(LS−HS) ∆E(BS−HS) ∆E(LS−HS) ∆E(BS−HS) ∆E(LS−HS) Exp.

Diradical I T0 0.55 1.10 0.88 1.74 1.32 2.50 0.50±0.02

Diradical II T0 1.23 2.44 2.18 4.24 3.34 6.14 1.74±0.07

[6]CPPM-Mes S0 –18.44 –17.44 –8.61 –6.16 12.94 7.14 –6.23±0.78

[3]CPBM-Ant D0 –14.61 –14.52 –9.21 –9.00 –2.05 –1.89 –3.5

[4]CPBM-Ant S0 –14.07 –14.00 –8.62 –6.16 1.27 1.06 –2.8

[5]CPBM-Ant D0 –12.60 –12.66 –10.16 –13.29 –11.41 –16.62 –2.4

[6]CPBM-Ant S0 –6.29 –5.96 3.48 3.30 15.85 12.84 –2.2

MC-F3A3 D0 –7.89 –8.40 –5.97 –8.43 –7.47 –12.39 –2.10

8MC S0 –6.72 –6.32 –8.06 –13.12 1.93 3.22 –3.08

MSE –6.5 –6.2 –2.7 –3.0 4.0 2.4

MUE 6.5 6.5 4.1 5.0 7.2 7.9

MIN 0.0 0.6 0.4 0.1 0.8 1.6

MAX 12.2 11.2 7.8 10.9 19.2 15.0
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Table 5: Energy difference (kcal/mol) between the low-
spin (LS) and high-spin (HS) states, ∆E(LS−HS), ob-
tained at the SF-TDDFT level.

Compound GS SF-TDBHHLYP Exp.

Diradical I T0 –9.34 0.50±0.02

Diradical II T0 –9.94 1.74±0.07

[6]CPPM-Mes S0 –3.37 –6.23±0.78

[3]CPBM-Ant D0 –17.99 —3.5

[4]CPBM-Ant S0 –17.80 –2.8

[5]CPBM-Ant D0 –15.86 –2.4

[6]CPBM-Ant S0 –9.34 –2.2

MC-F3A3 D0 –6.69 —2.10

8MC S0 –0.57 –3.08

MSE –7.9

MUE 9.1

MIN 2.5

MAX 15.0

44

Page 44 of 46

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 6: Calculated D and E EPR pa-
rameters (D/hc and E/hc in 103cm−1)
and exciton size (∆r, in Å)at the
ωB97X-D/IGLO-II level, of the low-
est triplet state of the selected com-
pounds.

Compound D E ∆r

Diradical I –5.52 –0.80 7.8

Diradical II –11.13 –3.66 6.2

[6]CPPM-Mes –12.60 –0.56 5.9

[4]CPBM-Ant –13.04 –1.74 5.8

[6]CPBM-Ant –10.05 –0.04 6.4

8MC 4.29 0.00 8.5
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