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Abstract: Multidimensional (MD) modeling is the basis for Data warehouses (DW), 
multidimensional databases (MDB) and On-Line Analytical Processing (OLAP) 
applications. In this paper, we present how the Unified Modeling Language (UML) can be 
successfully used to represent both structural and dynamic properties of these systems at 
the conceptual level. The structure of the system is specified by means of a UML class 
diagram that considers the main properties of MD modeling with minimal use of 
constraints and extensions of the UML. If the system to be modeled is too complex, thereby 
leading us to a considerable number of classes and relationships, we describe how to use 
the package grouping mechanism provided by the UML to simplify the final model. 
Furthermore, we provide a UML-compliant class notation (called cube class) to represent 
OLAP users' initial requirements. We also describe how we can use the UML state and 
interaction diagrams to model the behavior of a data warehouse system. To facilitate the 
interchange of conceptual MD models, we provide a Document Type Definition (DTD) 
which allows us to represent the same MD modeling properties that can be considered by 
using our approach. From this DTD, we can directly generate valid eXtensible Markup 
Language (XML) documents that represent MD models at the conceptual level. We believe 
that our innovative approach provides a theoretical foundation for simplifying the 
conceptual design of MD systems and the examples included in this paper clearly illustrate 
the use of our approach.  
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1 Introduction 
 
Multidimensional (MD) modeling is the foundation for Data warehouses (DW), 
multidimensional databases (MDB) and On-Line Analytical Processing (OLAP) 
applications. The benefit of using MD modeling is two-fold. On one hand, the MD model is 
close to data analyzers’ way of thinking; therefore, it helps users understand data. On the 
other hand, the MD model supports performance improvement as its simple structure 
allows us to predict final users’ intentions. 
 
Some approaches have been proposed lately (presented in Section 3) to accomplish the 
conceptual design of these systems. Unfortunately, none of them have been accepted as a 
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standard for DW conceptual modeling. These proposals try to represent main MD 
properties at the conceptual level with special emphasis on MD data structures. A 
conceptual modeling approach for DW, however, should also concern other relevant 
aspects such as users' initial requirements, the behavior of the system (e.g. main operations 
to be accomplished on MD data structures), available data sources, specific issues for 
automatic generation of the database schema and so on. We claim that object orientation 
with the UML provides an adequate notation for modeling every aspect of a DW system 
(MD data structures, the behavior of the system, etc.) from user requirements to 
implementation. 
 
We have proposed an object-oriented (OO) approach to accomplish the conceptual 
modeling of DW, MDB and OLAP applications that introduces a set of minimal constraints 
and extensions of the UML (Booch, Rumbaugh, and Jacobson, 1998) (OMG, 2001), needed 
for an adequate representation of MD modeling properties (Trujillo, 2001) (Trujillo, 
Palomar, Gómez, and Song, 2001b). These extensions are based on the standard 
mechanisms provided by the UML to adapt it to a specific method or model (e.g. 
constraints, tagged values). We have also presented how to group classes into packages to 
simplify the final model in case that the model becomes too complex due to the high 
number of classes (Luján-Mora, Trujillo, and Song, 2002). Furthermore, we have provided 
a UML-compliant class notation to represent OLAP users' initial requirements (called cube 
class). From these cube classes, we then describe the use of state and interaction diagrams 
to model the behavior of the system based on the applied OLAP operations (Trujillo, 
Palomar, and Gómez, 2000). We have also discussed issues such as identifying attributes 
and descriptor attributes that set the basis for an adequate semi-automatic generation of a 
database schema and user requirements in a target commercial OLAP tool.  
 
The UML can also be used with powerful mechanisms such as the Object Constraint 
Language (OCL) (Warmer and Kleppe, 1998) (OMG, 2001) and the Object Query 
Language (OQL) (Cattell et al. 2000) to embed DW constraints (e.g. additivity and derived 
attributes) and users' initial requirements in the conceptual model. In this way, when we 
model a DW system, we can obtain simple yet powerful extended UML class diagrams that 
represent main MD properties at a conceptual level. 
 
On the other hand, a salient issue these days in the scientific community and in the business 
world is the interchange of information. The eXtensible Markup Language (XML) (W3C, 
2000) is rapidly being adopted as the standard syntax for the interchange of un-structured, 
semi-structured and structured data. XML is an open neutral platform and vendor 
independent meta-language, which allows us to reduce the cost, complexity, and effort 
required in integrating data within and between enterprises. 
 
From these considerations, in this paper we present the following contributions. We believe 
that our innovative approach provides a theoretical foundation for the possible use of 
Object-Oriented Databases (OODB) and Object-Relational Databases (ORDB) for DW and 
OLAP applications. For this reason, we provide the representation of our approach into the 
standard for OODB proposed by the Object Database Management Group (ODMG) (Catell 
et al. 2000). We also believe that a relevant feature of a conceptual model should be its 
capability to share information in an easy and standard form. Therefore, we also present 
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how to represent MD models, accomplished by using our approach based on the UML, by 
means of the XML. In order to do this, we provide a Document Type Definition (DTD) that 
defines the correct structure and content of a XML document representing main MD 
properties. Finally, to show the benefit of our approach, we include a set of case studies to 
show the elegant way in which our proposal represents both structural and dynamic 
properties of MD modeling. 
 
The remainder of this paper is organized as follows: Section 2 details the major features of 
MD modeling that should be taken into account for a proper MD conceptual design. 
Section 3 summarizes the most relevant conceptual approaches proposed so far by the 
research community. In Section 4, we present how we use the UML to consider main 
structural and dynamic MD properties at the conceptual level. We also present how to 
facilitate the interchange of MD models by generating the corresponding standard provided 
by the ODMG and the DTD from UML. In Section 5, we present a set of case studies taken 
from Kimball (Kimball and Ross, 2002) to show the benefit of our approach. Finally, 
Section 6 draws conclusions and sketches out new research that is currently being 
investigated. 
 

2 Multidimensional modeling 
 
In MD modeling, information is structured into facts and dimensions. A fact is an item of 
interest for an enterprise, and is described through a set of attributes called measures or 
fact attributes (atomic or derived), which are contained in cells or points in the data cube. 
This set of measures is based on a set of dimensions that determine the granularity adopted 
for representing facts (i.e. the context in which facts are to be analyzed). Moreover, 
dimensions are also characterized by attributes, which are usually called dimension 
attributes. They are used for grouping, browsing, and constraining measures. 
 
Let us consider an example in which the fact is the product sales in a large store chain and 
the dimensions are as follows: product, store, customer and time. On the left hand side of 
Figure 1, we can observe a data cube typically used for representing an MD model. In this 
particular case, we have defined a cube for analyzing measures along the product, store and 
time dimensions. 
 
We note that a fact usually represents a many-to-many relationship between any of two 
dimensions. For example, a product is sold in many stores and a store sells many products. 
We also assume that there is a many-to-one relationship between a fact and each particular 
dimension. For example, for each store there are many sale tickets, but each sale ticket 
belongs to only one store.  
 
Nevertheless, there are some cases in which a fact may be associated with a particular 
dimension as a many-to-many relationship. For example, the fact product_sales is 
considered as a particular many-to-many relationship to the product dimension, as one ticket 
may consist of more than one product even though every ticket is still purchased in only one 
store by one customer and at one time. 
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With reference to measures, the concept of additivity or summaribility ((Blaschka, Sapia, 
Höfling, and Dinter, 1998), (Golfarelli, Maio, and Rizzi, 1998), (Kimball and Ross, 2002), 
(Trujillo et al., 2001b), (Tryfona, Busborg, and Christiansen, 1999)) on measures along 
dimensions is crucial for MD data modeling. A measure is additive along a dimension if the 
SUM operator can be used to aggregate attribute values along all hierarchies defined on that 
dimension. The aggregation of some fact attributes (roll-up, in OLAP terminology), 
however, might not be semantically meaningful for all measures along all dimensions. A 
measure is semi-additive if the SUM operator can be applied to some dimensions, but not 
all the dimensions. A measure is non-additive if the SUM operator cannot be applied to any 
dimension. In our example, number of clients (estimated by counting the number of 
purchased receipts for a given product, day and store) is not additive along the product 
dimension. Since the same ticket may include other products, adding up the number of clients 
along two or more products would lead to inconsistent results. However, other aggregation 
operators (e.g. SUM, AVG and MIN) could still be used along other dimensions such as 
time. Thus, number of clients is semi-additive. Finally, examples of non-additive measures 
would be those measures that record a static level such as inventory financial account 
balances or measures of intensity such as room temperatures (Kimball and Ross, 2002). 
 

 
Figure 1: A data cube and classification hierarchies defined on dimensions 

 
Regarding dimensions, the classification hierarchies defined on certain dimension 
attributes are crucial because the subsequent data analysis will be addressed by these 
classification hierarchies. A dimension attribute may also be aggregated (related) to more 
than one hierarchy. Therefore, multiple classification hierarchies and alternative path 
hierarchies are also relevant. For this reason, a common way of representing and 
considering dimensions with their classification hierarchies is by means of Directed 
Acyclic Graphs (DAG). 
 
On the right hand side of Figure 1, we can observe different classification hierarchies 
defined on the product, store and time dimensions. On the product dimension, we have 
considered a multiple classification hierarchy to be able to aggregate data values along two 
different hierarchy paths: (i) product, type, family, group and (ii) product, brand. On the other 
hand, we can also find attributes that are not used for aggregating purposes, instead they 
provide features for other dimension attributes (e.g. product name). On the store dimension, 
we have defined an alternative classification hierarchy with two different paths that 
converge into the same hierarchy level: (i) store, city, province, state and (ii) store, 
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sales_area, state. Finally, we have defined another multiple classification hierarchy with the 
following paths on the time dimension: (i) time, month, semester, year and (ii) time, season. 
 
Nevertheless, classification hierarchies are not so simple in most cases. The concepts of 
strictness and completeness are quite important, not only for conceptual purposes, but also 
for further design steps of MD modeling (Tryfona et al.). Strictness means that an object of 
a lower level in a hierarchy belongs to only one in a higher level, e.g. a province is only 
related to one state. Completeness means that all members belong to one higher-class object 
which consists of those members only. For example, suppose that the classification 
hierarchy between the state and province levels is “complete”. In this case, a state is formed 
by all the provinces recorded and all the provinces that form the state are recorded. 
 
OLAP scenarios sometimes become very large as the number of dimensions increases 
significantly, which may then lead to extremely sparse dimensions and data cubes. In this 
way, there are some attributes that are normally valid for all elements within a dimension 
while others are only valid for a subset of elements (also known as the categorization of 
dimensions ((Lehner, 1998), (Tryfona et al.)). For example, attributes alcohol percentage 
and volume would only be valid for drink products and will be “null” for food products. Thus, 
a proper MD data model should be able to consider attributes only when necessary, 
depending on the categorization of dimensions. 
 
Furthermore, let us suppose that apart from a high number of dimensions (e.g. 20) with 
their corresponding hierarchies, we have a considerable number of facts (e.g. 8) sharing 
dimensions and classification hierarchies. This system will lead us to a very complex 
design, thereby increasing the difficulty in reading the modeled system. To avert a 
convoluted design, an MD conceptual model should also provide techniques to avoid flat 
diagrams, allowing us to group dimensions and facts to simplify the final model. 
 
Once the structure of the MD model has been defined, OLAP users usually define a set of 
initial requirements as a starting point for the subsequent data analysis phase. From these 
initial requirements, users can apply a set of operations (usually called OLAP operations) 
(Chaudhuri and Dayal, 1997) to the MD view of data for further data analysis. These OLAP 
operations are usually as follows: roll-up (increasing the level of aggregation) and drill-
down (decreasing the level of aggregation) along one or more classification hierarchies, 
slice-dice (selection and projection) and pivoting (re-orienting the MD view of data which 
also allows us to exchange dimensions for facts; i.e. symmetric treatment of facts and 
dimensions). 
 

2.1 Star Schema  
 
In this sub-section, we will summarize the star schema popularized by Kimball (Kimball 
and Ross, 2002), as it is the most well-known schema representing MD properties in 
relational databases. 
 
Kimball claims that the star schema and its variants fact constellations schema and the 
snowflake schema are logical choices for MD modeling to be implemented in relational 
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systems. We will briefly introduce this well-known approach using Sales Dimensional 
Model. 
 
Figure 2 shows an example of Kimball’s Sales Dimensional Model. In this model, the fact 
is the name of the middle box (Sales fact table).  Measures are the non-foreign keys in the 
fact table (dollars_sold, units_sold, and dollars_cost).  Dimensions are the boxes connected to 
the fact table in a one-to-many relationship (Time, Store, Product, Customer, and Promotion). 
Each dimension contains relevant attributes: day_of_week, week_number, and month in Time; 
store_name, address, district, and floor_type in Store, and so on. 
 
From Figure 2, we can easily see that there are many MD features that are not reflected in 
the Dimensional Model: Which are the classification hierarchies defined on dimensions? 
Can we use all aggregation operators on all measures along all dimensions? What are these 
classification hierarchies like (non-strict, strict, and complete)? And many more properties. 
Therefore, we argue that for a proper DW and OLAP design, a conceptual MD model 
should be provided to better reflect user requirements. This conceptual model could then be 
translated into a logical model for a later implementation. In this way, we can be sure that 
we are analyzing the real world as users perceive it.  

 

Figure 2: Sales Dimensional Model 
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3 Related work 
 
Lately, several MD data models have been published. Some of them fall into the logical 
level (such as the well-known star-schema by Kimball (Kimball and Ross, 2002). Others 
may be considered as formal models, as they provide a formalism to consider main MD 
properties. A review of the most relevant logical and formal models can be found in 
Blaschka et al. and Abello, Samos and Saltor (2001). 
 
In this section, we will only briefly make reference to the most relevant models that we 
consider “pure” conceptual MD models. These models provide a high level of abstraction 
for the main MD modeling properties presented in Section 2 and are totally independent 
from implementation issues. These are as follows: The Dimensional-Fact (DF) model by 
Golfarelli et al. (1998), The Multidimensional/ER (M/ER) model by Sapia, Blaschka, 
Höfling, and Dinter (1998) and Sapia (1999) and The starER model by Tryfona et al.. 
 
In Table 1, we provide the coverage degree of each above-mentioned conceptual model 
regarding the main MD properties described in the previous section. To start with, to the 
best of our knowledge, no proposal provides a grouping mechanism to avoid flat diagrams 
and to simplify the conceptual design when a system becomes complex due to a high 
number of dimensions and facts sharing dimensions and their corresponding hierarchies. 
Regarding facts, only the starER model considers many-to-many relationships between 
facts and particular dimensions by indicating the exact cardinality (multiplicity) between 
them. None of them consider derived measures or their derivation rules as part of the 
conceptual schema. The DF and the starER models consider the additivity of measures by 
explicitly representing the set of aggregation operators that can be applied on non-additive 
measures. With reference to dimensions, all of the models consider multiple and alternative 
path classification hierarchies by means of Directed Acyclic Graphs (DAG) defined on 
certain dimension attributes. However, only the starER model considers non-strict and 
complete classification hierarchies by specifying the exact cardinality between 
classification hierarchy levels. As both the M/ER and the starER models are extensions of 
the Entity Relationship (ER) model, they can easily consider the categorization of 
dimensions by means of Is-a relationships. 
 

Multidimensional modeling properties Model 
 DF M/ER StarEr 

Structural level    
Grouping mechanism No No No 
Facts    
    Many-to-many relationships with particular dimensions No No Yes 
    Atomic measures Yes Yes Yes 
    Derived measures No No No 
    Additivity Yes No Yes 
Dimensions    
    Multiple and alternative path classification hierarchies Yes Yes Yes 
    Nonstrict classification hierarchies No No Yes 
    Complete classification hierarchies No No Yes 
    Categorization of dimensions No Yes Yes 
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Dynamic level    
Specifying users' initial requirements Yes Yes No 
OLAP operations No Yes No 
Modeling system behavior No Yes No 

Graphical notation Yes Yes Yes 
Automatic generation into a target OLAP commercial tool No Yes No 

Table 1: Comparison of conceptual multidimensional models 

 
With reference to the dynamic level of MD modeling, the starER model is the only one that 
does not provide an explicit mechanism to represent users' initial requirements. On the 
other hand, only the M/ER model provides a set of basic OLAP operations to be applied 
from these users' initial requirements, and it models the behavior of the system by means of 
state diagrams. 
 
We note that all the models provide a graphical notation that facilitates the conceptual 
modeling task to the designer. On the other hand, only the M/ER model provides a 
framework for an automatic generation of the database schema into a target commercial 
OLAP tool (particularly into Informix Metacube and Cognos Powerplay). 
 
Finally, none of the proposals from Table 1 provide a mechanism to facilitate the 
interchange of the models following standard representations. Regarding MD modeling and 
the eXtensible Markup Language (XML) (W3C, 2000), some proposals have been 
presented. All of these proposals make use of XML as the base language for describing 
data. In (Pokorný, 2001), an innovative data structure called an XML-star schema is 
presented with explicit dimension hierarchies using DTDs that describe the structure of the 
objects permitted in XML data. The approach presented in (Golfarelli, Rizzi and Vrdoljak, 
2001) proposes a semi-automatic approach for building the conceptual schema for a data 
mart starting from the XML sources. However, these approaches focus on the presentation 
of the multidimensional XML data rather than on the presentation of the structure of the 
multidimensional conceptual model itself. 
 
From Table 1, one may conclude that none of the current conceptual modeling approaches 
consider all MD properties at both the structural and dynamic levels. Therefore, we claim 
that a standard conceptual model is needed to consider all MD modeling properties at both 
the structural and dynamic levels. We argue that an OO approach with the UML is the right 
way of linking structural and dynamic level properties in an elegant way at the conceptual 
level. 
 

4 Multidimensional modeling with UML 
 
In this section, we summarize how our OO MD model, based on a subset of the UML, can 
represent main structural and dynamic properties of MD modeling. In Section 4.1, we will 
present how to represent main structural properties by means of a UML class diagram. 
Section 4.2 summarizes how users' initial requirements are easily considered by what we 
call cube classes. Section 4.3 describes how to model the behavior of MD databases by 
using UML state and interaction diagrams from the information represented in these cube 
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classes. Section 4.4 sketches how we automatically transform an MD model accomplished 
by following our approach into the Object Database Standard defined by the Object 
Database Management Group (ODMG) (Cattell et al., 2000). Finally, Section 4.5 presents 
the corresponding representation of our approach into the XML (W3C, 2000) to allow us an 
easy interchange of MD information. 
 

4.1 Structural properties by using UML class diagrams 
 
The main structural features considered by UML class diagrams are the many-to-many 
relationships between facts and dimensions, degenerate dimensions, multiple and 
alternative path classification hierarchies, and non-strict and complete hierarchies. 
 
It is important to remark that if we are modeling complex and large DW systems, we are 
not restricted to using flat UML class diagrams. Instead, we can make use of the grouping 
mechanism provided by the UML called package to group classes together into higher level 
units to create different levels of abstraction, therefore, simplifying the final model (Luján 
et al., 2002). In this way, a UML class diagram improves and simplifies the system 
specification accomplished by classic semantic data models such as the ER model. 
Furthermore, necessary operations and constraints (e.g. additivity rules) can be embedded 
in the class diagram by means of OCL expressions ((Warmer and Kleppe, 1998), (OMG, 
2001). 
 
In this approach, the main structural properties of MD models are specified by means of a 
UML class diagram in which the information is clearly separated into facts and dimensions. 
Dimensions and facts are represented by dimension classes and fact classes, respectively. 
Then, fact classes are specified as composite classes in shared aggregation relationships of 
n dimension classes. The flexibility of shared aggregation in the UML allows us to 
represent many-to-many relationships between facts and particular dimensions by 
indicating the 1..* cardinality on the dimension class role. In our example in Figure 3 (a), 
we can see how the fact class Sales has a many-to-one relationship with both dimension 
classes. 
 
By default, all measures in the fact class are considered additive. For non-additive 
measures, additivity rules are defined as constraints and are included in the fact class. 
Furthermore, derived measures can also be explicitly considered (indicated by /) and their 
derivation rules are placed between braces near the fact class, as shown in Figure 3 (a). 
 
This OO approach also allows us to define identifying attributes in the fact class, by placing 
the constraint {OID} next to an attribute name. In this way we can represent degenerate 
dimensions ((Giovinazzo, 2000) and (Kimball and Ross, 2002)), thereby representing other 
fact features in addition to the measures for analysis. For example, we could store the ticket 
number (ticket_num) and the line number (line_num) as degenerate dimensions, as reflected 
in Figure 3 (a). 
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Figure 3: Multidimensional modeling using UML 

 
With respect to dimensions, every classification hierarchy level is specified by a class 
(called a base class). An association of classes specifies the relationships between two 
levels of a classification hierarchy. The only prerequisite is that these classes must define a 
Directed Acyclic Graph (DAG) rooted in the dimension class (constraint {dag} placed next 
to every dimension class). The DAG structure can represent both alternative path and 
multiple classification hierarchies. Every classification hierarchy level must have an 
identifying attribute (constraint {OID}) and a descriptor attribute1 (constraint {D}). These 
attributes are necessary for an automatic generation process into commercial OLAP tools, 
as these tools store the information in their metadata. The multiplicity 1 and 1..* , defined 
in the target associated class role, addresses the concepts of strictness and non-strictness, 
respectively. Strictness means that an object at a hierarchy's lower level belongs to only one 
higher-level object (e.g., as one month can be related to more than one season, the 
relationship between them is non-strict). Moreover, defining the {completeness} constraint 
in the target associated class role addresses the completeness of a classification hierarchy 
(see an example in Figure 3 (b)). By completeness we mean that all members belong to one 
higher-class object and that object consists of those members only. For example, all the 
recorded seasons form a year, and all the seasons that form the year have been recorded. 
Our approach assumes all classification hierarchies are non-complete by default. 
 
Finally, the categorization of dimensions, used to model additional features for a class's 
subtypes, is represented by means of generalization-specialization relationships. However, 
only the dimension class can belong to both a classification and a specialization hierarchy 
at the same time. An example of categorization for the Product dimension is shown in 
Figure 3 (c). 
 

4.2 Dynamic properties 
 
Regarding dynamic properties, this approach allows us to specify users' initial requirements 
by means of a UML-compliant class notation called cube class. After requirements are 
specified, behavioral properties are usually then related to these cube classes that represent 
                                                 
1 A descriptor attribute will be used as the default label in the data analysis. 
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users' initial requirements. We particularly use state and interaction diagrams (see Section 
4.3) to model the behavior (evolution) of these cube classes based on the applied OLAP 
operation. 
 
Cube classes follow the query by example (QBE) method: the requirements are defined by 
means of a template with blank fields. Once requirements are define, the user can then enter 
conditions for each field that are included in the query. We provide a graphical 
representation to specify users' initial requirements because QBE systems are considered 
easier to learn than formal query languages. The structure of a cube class is shown in 
Figure 4: 
 

• Cube class name. 
• Measures area, which contains the measures from the fact to be analyzed. 
• Slice area, which contains the constraints to be satisfied in the dimensions. 
• Dice area, which contains the dimensions and their grouping conditions to address 

the analysis. 
• Order area, which specifies the order of the result set. 
• Cube operations, which cover the OLAP operations for a further data-analysis 

phase.  
 

 
Figure 4: Cube class structure 

 
We should point out that this graphical notation of the cube class aims at facilitating the 
definition of users' initial requirements to non-expert UML or databases users. In a more 
formal way, every one of these cube classes has its underlying OQL specification. 
Moreover, an expert user can directly define cube classes by specifying the OQL sentences 
(see Section 4.5 for more detail on the representation of cube classes by using OQL). 
 

4.3 Behavioral properties by using state and interaction diagrams 
 
From these cube classes seen in the previous section, final users may start a navigational 
process by applying certain OLAP operations (roll-up, drill-down, etc.) in the further data 
analysis phase. These operations are closed as they generate another cube class as an 
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output. Thus, we use state and interaction diagrams2 to model the behavior (evolution) of 
these cube classes based on the applied OLAP operation. These diagrams contain 
information about the most probable evolution of final users' requirements from the 
specified initial requirement. The information contained in these diagrams can be used by 
OLAP designers to predict user behaviors, and therefore, help them design a proper view 
maintenance policy. 
 
Regarding state diagrams, one state diagram is defined for each initial cube class.  The 
diagram specifies that certain OLAP operations lead users to cube classes that allow them 
to analyze the same data (the same measures along the same dimensions) in different ways 
(navigating through the classification hierarchies defined along the dimensions considered). 
In these diagrams, each classification hierarchy level defined on a dimension included in 
the Dice area is considered as a valid state. Every one of these valid states will be a new 
cube class. Then, the provided OLAP operations allow us to navigate along the states to 
define new cube classes. 
 
In Figure 5, we can see an example of state diagrams. One state is defined for every level 
considered in the classification hierarchy of the dimensions included in the corresponding 
Dice area of the cube class. The data analysis will start in the initial state that corresponds 
to the finest condition specified in the Slice area. Let us suppose that we are interested in 
navigating along both the product and store dimensions. Classical Roll-up and Drill-down 
OLAP operations will allow us to aggregate and de-aggregate data (measures) respectively 
along the hierarchy levels defined in the classification hierarchies. Finally, from every state, 
we can finish the data analysis with the destroy operation that will lead us to the final state.  
 

 
Figure 5: An example of state interaction diagram 

 
On the other hand, an interaction diagram can also be defined for each UML class 
diagram. In our approach, we have adopted sequence diagrams ((Booch et al.), (OMG, 
2001)) for their clarity and low complexity. This interaction diagram shows interactions 
among cube classes, changed by OLAP operations such as rotate, pivot, slice, or dice. Thus, 
we can specify that certain OLAP operations (e.g. dice) lead users to cube classes which 
                                                 
2 See Chapter 4 [Trujillo01a] and [Trujillo00] for more information about the provided OLAP operations and 
how to build state and interaction diagrams. 
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will show completely different data. Thus, these new cube classes represent the most 
probable new requirements a final user wishes to execute. 
 
In Figure 6, we can see an example of interaction diagrams. Let us suppose that we have 
only defined two cube classes to specify two initial requirements. Then, we specify the 
operation needed to switch from one cube class into the other. In this particular case, the 
Rotate operation indicates the transition that lead us to the CC_2 from the CC_1. In 
concrete, we are also interested in analyzing data along the Customer dimension. As we are 
still interested in the dimensions defined in CC_1, we do not eliminate any dimension in 
this operation. It is easy to see that we always define the reverse operation to give analyzers 
the opportunity of returning to the initial point of analysis. 
 

 
Figure 6: An example of interaction diagrams 

 

4.4 Standard representation by using the ODMG proposal 
 
Our approach generates the corresponding representation of an MD model in most of the 
relational database management systems such as Oracle, Informix, Microsoft SQL Server, 
IBM DB2 and so on (Trujillo et al., 2001b). Furthermore, we also provide the 
corresponding representation into object-oriented databases. However, this representation is 
totally dependent on the object database management system (ODBMS) used for the 
corresponding implementation. For this reason, in this Section, we present the 
corresponding representation of an MD model accomplished by our approach following the 
standard for ODBMS3 proposed by the Object Database Management Group (ODMG) 
(Cattell et al., 2000). The adoption of this standard ensures the portability of our MD model 
across platforms and products, thereby facilitating the use of our approach. However, we 

                                                 
3 The ODMG defines an ODBMS as "[…] a DBMS that integrates database capabilities with object-oriented 
programming language capabilities". 
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also point out some properties that cannot be directly represented by using this standard and 
that should be taken into account when transforming this ODBM into a particular object-
oriented model of the target ODBMS. 
 
The major components of the ODMG standard are the Object Model, the Object Definition 
Language (ODL), the Object Query Language (OQL), and the bindings of the ODMG 
implementations to different programming languages (C++, Smalltalk, and Java). In this 
paper, we will start by providing the corresponding representation for structural properties 
into the ODL, a specification language used to define the specifications of object types. 
Then, we will sketch how to represent cube classes into the OQL, a query language that 
supports the ODMG data model. The great benefit of this OQL is that is very close to SQL, 
and is therefore, a very simple-to-use query language.  
 

ODL definition of an MD model 
 
Our three-level MD model cannot be represented in an ODBMS, because the ODL uses a 
flat representation for the class diagram without providing any package mechanism in the 
ODL. Therefore, we start the transformation of the MD models from the third level in the 
fact package, because it contains the complete MD model definition: fact classes, 
dimension classes, base classes, classification hierarchy properties, etc.  
 
In the following, we are going to use an actual example to clarify our approach. We have 
selected a simplification of the grocery example taken from Kimball's book (Kimball and 
Ross, 2002). In this example, the corresponding MD model contains the following 
elements: 
 

• One fact (Sales) with three measures (quantity, price and total_price) and two 
degenerate dimensions (ticket_num and line_num). 

• Two dimensions: Product, with three hierarchy levels (Brand, Subgroup, and Group) 
and Time, with two hierarchy levels (Month and Year). 

 
The first level of the MD model is represented in Figure 7 and only contains one star 
schema package, as the example only contains one fact. The second level contains one fact 
package (Sales product) and two dimension packages (Product and Time), as it can be seen in 
Figure 8. Finally, Figure 9 represents the content of the Product dimension package, and 
Figure 10 the content of the Time dimension package. 
 



Journal of Database Management, Vol. 15, No.1, 2004, pp. 41-72. 

15 

 
Figure 7 

 
Figure 8 

 
Figure 9 

 
Figure 10 

 
In Figure 11, we can see the content (level 3) of the Sales products fact package, where the 
complete definition of the MD model is available. The transformation process starts from 
this view of the MD model. 
 

 
Figure 11: Third level of the MD model 

 
For the sake of simplicity, we show the ODL representation of only three classes: Sales, 
Product, and Time (the representation of the other classes is very similar). The 
transformation process starts from the fact class (Sales). Since OID attributes cannot be 
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represented in ODL, we have decided to use the unsigned long type to represent them. 
Aggregation relationships cannot be directly represented, but we transform them to 
association relationships. Moreover, maximum cardinality of relationships can be 
expressed, but the minimum cardinality is lost in the transformation process. In ODL, the 
definition of a relationship includes designation of the target type, the cardinality on the 
target side, and information about the inverse relationship found in the target side. The 
ODL definition for the Sales fact class is as follows: 
 
class Sales 
{ 
  attribute unsigned long ticket_num; 
  attribute unsigned long line_num; 
  attribute long quantity; 
  attribute double price; 
  attribute double total_price; 
  relationship Product sales_product inverse Product::product_sales; 
  relationship Time sales_time inverse Time::time_sale; 
}; 

 
For expressing the cardinality ?-to-many, we use the ODL constructor set. For example, 
the Product class has three relationships: with Sales class (?-to-many), with Brand class (?-
to-one) and with Subgroup class (?-to-many). In order to know the cardinality of the 
relationships in this side, we have to consult the inverse relationship in the target side. For 
example, the relationship between Product and Sales is one-to-many, since the type of the 
relationship is set<Sales> (many) in this side, but in the inverse relationship 
(Sales::sales_product) it is Product (one). Product and Time dimension classes are specified in 
ODL as: 
 
 
 
class Product 
{ 
  attribute unsigned long upc; 
  attribute string name; 
  attribute float weight; 
  relationship set<Sales> product_sales inverse Sales::sales_product; 
  relationship Brand product_brand inverse Brand::brand_product; 
  relationship set<Subgroup> product_subgroup inverse Subgroup::subgroup_product; 
}; 
 
class Time 
{ 
  attribute unsigned long code; 
  attribute date day; 
  attribute boolean holiday; 
  relationship set<Sales> time_sales inverse Sales::sales_time; 
  relationship Month time_month inverse Month::month_time; 
}; 

 

Loss of expressiveness 
 
As previously commented, some MD properties that are captured in our approach cannot be 
directly considered by using ODL. This is an obvious problem, because the ODL is a 
general definition language that is not oriented to represent MD properties used in a 
conceptual design. Specifically, we ignore or transform the following properties: 



Journal of Database Management, Vol. 15, No.1, 2004, pp. 41-72. 

17 

 
• Identifying attribute (OID) and descriptor attribute (D) are ignored because they are 

considered to be an implementation issue that will be automatically generated by the 
ODBMS. 

• Initial values are ignored. This is not a key issue in conceptual MD modeling. 
• Derived attributes and their corresponding derivation rules are ignored. These 

derivation rules will have to be specified when defining user requirements by using 
the OQL. 

• Additivity rules are ignored because the ODL specification cannot represent any 
information related to the aggregation operators that can be applied on measures. 

• Minimum cardinality cannot be specified either. 
• Completeness of a classification hierarchy is also ignored. 

 
Up to now, these ignored properties have to be considered as footnotes in the ODMG 
specification. For an unambiguous specification of MD models using the ODMG 
specification, a formal constraint language should be used. Unfortunately, a constraint 
language is completely missing from the ODMG standard specification. 
 

Cube classes represented by using OQL 
 
The OQL is not easy to use for defining users' initial requirements, because the user needs 
to know the underlying ODL representation corresponding to the MD model. Due to this 
fact, we also provide cube classes, which allow the user to define initial requirements in a 
graphical way. These cube classes can automatically be transformed into OQL sentences, 
and can therefore be used to query an ODBMS that stores an MD model. For example, let 
us suppose the following initial requirement: 
 
The quantity sold of the products belonging to the "Grocery" Group during 
"January", grouped according to the product Subgroup and the Year and 

ordered by the Brand of the product 
 
In Figure 12, we can see the corresponding cube class to the previous requirement. It is 
easy to see how the cube class is formed: 
 

• Measures contains the goal of the analysis: SUM(quantity). 
• Slice the restrictions defined on the Time and Product dimensions. 
• Dice the grouping conditions required along the Product and Time dimensions. 
• And Order defines the order of the result set. 
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Figure 12: An example of a user's initial requirement 

 
The cube class can be automatically translated into OQL. The algorithm uses the 
corresponding ODL definition of the MD model to obtain the paths from the fact class (the 
core of the analysis) to the rest of classes (dimension and base classes). For example, the 
path from the Sales fact class to the Year base class along the Time dimension traverses the 
relationships sales_time in Sales fact class, time_month in Time dimension class, and 
month_year in Month base class. Moreover, when attributes’ names are omitted in the cube 
class, the algorithm automatically selects the descriptor attribute defined in the MD model. 
For example, the expression Time.Month="January" of the cube class in Figure 12 involves 
the use of the descriptor attribute from the Month base class, because no further attribute is 
specified. In the same way, the order expression Product.Brand involves the use of the 
descriptor attribute from Brand. The OQL for the corresponding cube class in Figure 12 is 
as follows: 
 
SELECT SUM(s.quantity) 
FROM Sales s, s.sales_time st, s.sales_product sp 
WHERE st.time_month.name = "January" AND 
sp.product_subgroup.subgroup_group.name = "Grocery" 
GROUP BY sp.product_subgroup.name AND st.time_month.month_year.number 
ORDER BY sp.product_brand.name 
 
 
 

4.5 XML to interchange multidimensional properties 
 
One key aspect in the success of an MD model should be its capability to interchange 
information in an easy and standard format. The eXtensible Markup Language (XML) 
(W3C, 2000) is rapidly being adopted as the standard for the exchange of un-structured, 
semi-structured and structured data. Furthermore, XML is an open neutral platform and 
vendor independent meta-language, which allows users to reduce the cost, complexity, and 
effort required in integrating data within and between enterprises. In the future, all 
applications may exchange their data in XML and then conversion utilities will not be 
necessary any more. 
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We have adopted the XML to represent our MD models due to its advantages, such as 
standardization, usability, versatility and so on. We have defined a Document Type 
Definition (DTD) that determines the correct structure and content of XML documents that 
represent MD models. Moreover, this DTD can be used to automatically validate the XML 
documents. In Appendix 1 we include the whole DTD that we have defined to represent 
MD models in XML. This DTD allows us to represent both structural and dynamic 
properties of MD models. 
 
In Table 2, we have summarized the main rules of our DTD, which contains 38 elements 
(tags). We have defined additional elements (in plural form) in order to group common 
elements together, so that they can be exploited to provide optimum and correct 
comprehension of the model, e.g. elements in plural like PKSCHEMAS or 
DEPENDENCIES. 
 
The DTD follows the three-level structure of our MD approach: 
 

• An MD model contains PKSCHEMAS (star schema packages) at level 1 (Table 2, 
line 1). 

• A PKSCHEMA contains at most one PKFACT (fact package) and many PKDIMS 
(dimension packages) and IMPPKDIMS (imported dimensions) at level 2 (Table 2, 
line 2). 

• A PKFACT contains at most one FACTCLASS (Table 2, line 4) and a PKDIM 
contains at most one DIMCLASS and many BASECLASSES (Table 2, line 3) at 
level 3. 

 
Within our DTD, fact classes labeled FACTCLASS may have no fact attributes to consider 
fact-less fact tables, as can be observed in the content of the element FACTATTS (Table 2, 
line 6): 0 or more FACTATT. 
 
1. <!ELEMENT MDMODEL (PKSCHEMAS, DEPENDENCIES, CUBECLASSES)> 
2. <!ELEMENT PKSCHEMA (PKFACT?, PKDIMS, IMPPKDIMS, DEPENDENCIES)> 
3. <!ELEMENT PKDIM (DIMCLASS?, BASECLASSES, IMPBASECLASSES)> 
4. <!ELEMENT PKFACT (FACTCLASS?)> 

5. <!ELEMENT FACTCLASS (FACTATTS, METHODS, SHAREDAGGS)> 
6. <!ELEMENT FACTATTS (FACTATT*)> 

Table 2: DTD main rules 

 
From now on, we are going to explain the structure of our DTD by means of the grocery 
example presented in the previous section. In the next fragment of the XML document that 
represents the grocery example, the first line defines the XML version and the character 
encoding used in the document. The next line declares the DTD that defines the structure of 
the document. Finally, the third line describes the root element of the document 
(MDMODEL). An MD model (Table 2, line 1) contains star schema packages (PKSCHEMAS) 
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with dependencies between them (DEPENDECIES) and users' initial requirements 
(CUBECLASSES).  
 
In this example, the MD model only contains one star schema package (Figure 7); as there 
is not any dependency between star schema packages the DEPENDENCIES element is 
empty. Finally, the CUBECLASSES element is also empty as no initial requirement has 
been specified yet. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE MDMODEL SYSTEM "MDModel.dtd"> 
<MDMODEL id="ID5" name="Grocery example"> 
  <PKSCHEMAS> 
    <PKSCHEMA id="ID6" name="Grocery" caption="Grocery"> 
    ... 
    </PKSCHEMA> 
  </PKSCHEMAS> 
  <DEPENDENCIES/> 
  <CUBECLASSES/> 
</MDMODEL> 

 
In our DTD, every MD element has an ID attribute that must be unique to the whole XML 
document. The value of this attribute is automatically generated by our exportation process 
and is used in the definition of relationships between elements in our MD model, e.g., in the 
definition of the dependencies between packages. 
 
The next fragment represents the definition of the star schema Grocery. A PKSCHEMA 
(Table 2, line 2) can contain: 
 

• At most one PKFACT. 
• 0 or more dimension packages (PKDIMS) defined in the very star schema. 
• 0 or more dimension packages imported form other star schemas (IMPPKDIMS). 
• Dependencies between the dimensions packages (DEPENDENCIES). 

 
Every package, regardless being a fact or a dimension package, has a name used in the 
exportation process and a caption used in the graphical representation. As seen in this 
fragment of the XML document, two dependencies have been defined from the Sales 
products package (ID7) to the Product package (ID8) and the Time package (ID9). 
Thanks to the use of the IDREF attribute type in the DTD, we can define that start and 
end attributes of DEPENDENCY element that must take a value from an ID attribute of an 
element in the XML document. 
 
<PKSCHEMA id="ID6" name="Grocery" caption="Grocery"> 
  <PKFACT id="ID7" name="Sales_products" caption="Sales products"> 
  ... 
  </PKFACT> 
  <PKDIMS> 
    <PKDIM id="ID8" name="Product"> 
    ... 
    </PKDIM> 
    <PKDIM id="ID9" name="Time"> 
    ... 
    </PKDIM> 
  </PKDIMS> 
  <IMPPKDIMS/> 
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  <DEPENDENCIES> 
    <DEPENDENCY id="ID10" start="ID7" end="ID8"/> 
    <DEPENDENCY id="ID11" start="ID7" end="ID9"/> 
  </DEPENDENCIES> 
</PKSCHEMA> 

 
The following fragment defines the dimension package Product.  A dimension package 
(Table 2, line 3) contains: 
 

- At most one dimension class (DIMCLASS). 
- 0 or more base classes that represent hierarchy levels (BASECLASSES). 
- 0 or more imported bases classes from other dimension packages 

(IMPBASECLASSES). 
 

In this fragment we can see how the relationships between a dimension class and base 
classes are expressed in our DTD; the cardinality of the relationship is expressed by means 
of the attributes roleA and roleB. We can also see the definition of the three attributes 
of the Product dimension class: upc, name, and weight. In the DTD, the {OID} and {D} 
constraints of our MD model are represented as attributes OID and D of the DIMATT 
element. 
 
<PKDIM id="ID8" name="Product"> 
  <DIMCLASS id="ID12" name="Product"> 
    <DIMATTS> 
      <DIMATT id="ID15" name="upc" atomic="true" type="Integer" 
       OID="true" D="false"/> 
      <DIMATT id="ID16" name="name" atomic="true" type="String" 
       OID="false" D="true"/> 
      <DIMATT id="ID17" name="weight" atomic="true" type="Single" 
       OID="false" D="false"/> 
    </DIMATTS> 
    <RELATIONASOCS> 
      <RELATIONASOC id="ID35" child="ID18" roleA="1..M" roleB="1" 
       completeness="false"/> 
      <RELATIONASOC id="ID36" child="ID25" roleA="1..M" roleB="1..M" 
       completeness="false"/> 
    </RELATIONASOCS> 
    <RELATIONCATS/> 
    <METHODS/> 
  </DIMCLASS> 
  <BASECLASSES> 
    <BASECLASS id="ID18" name="Brand"> 
    ... 
    </BASECLASS> 
    <BASECLASS id="ID25" name="Subgroup"> 
    ... 
    </BASECLASS> 
    <BASECLASS id="ID30" name="Group"> 
    ... 
    </BASECLASS> 
  </BASECLASSES> 
  <IMPBASECLASSES/> 
</PKDIM> 

 
Finally, a fact package (Table 2, line 4) contains at most one fact class, and each fact class 
(Table 2, line 5) can contain fact attributes (FACATTS), methods (METHODS) and shared 
aggregations with the dimension classes (SHAREDAGGS). Notice that many-to-many 
relationships between facts and dimensions can also be expressed by assigning the same 
value "M" to both attributes roleA and roleB in the DTD element SHAREDAGG. 
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<PKFACT id="ID7" name="Sales_products" caption="Sales products"> 
  <FACTCLASS id="ID70" name="Sales"> 
    <FACTATTS> 
      <FACTATT id="ID71" name="ticket_num" atomic="true" 
       type="Integer" OID="true"/> 
      <FACTATT id="ID72" name="line_num" atomic="true" type="Integer" 
       OID="true"/> 
      <FACTATT id="ID73" name="quantity" atomic="true" type="Integer" 
       OID="false"/> 
      <FACTATT id="ID74" name="price" atomic="true" type="Currency" 
       OID="false"/> 
      <FACTATT id="ID75" name="total_price" atomic="true" 
       type="Currency" derivationRule="quantity * price" OID="false"/> 
    </FACTATTS> 
    <METHODS/> 
    <SHAREDAGGS> 
      <SHAREDAGG id="ID80" dimclass="ID12" roleA="1" roleB="1..M"/> 
      <SHAREDAGG id="ID81" dimclass="ID49" roleA="1" roleB="1..M"/> 
    </SHAREDAGGS> 
  </FACTCLASS> 
</PKFACT> 

 

5 Case studies 
 
The aim of this section is to exemplify the usage of our conceptual modeling approach on 
modeling MD databases. We have selected three different examples taken from Kimball’s 
book [Kimball02], each of which introduces a new particular modeling feature: a 
warehouse, a large bank, and a college course. Due to the lack of space, we will only apply 
our complete modeling approach for the first example: we will apply all of the diagrams we 
use for modeling a DW (package diagrams, class diagrams, interaction diagrams, etc.). For 
the rest of the examples, due to space constraints, we will only focus on representing the 
structural properties of MD modeling by specifying the corresponding UML class diagram. 
This class diagram is the key one in our approach since the rest of diagrams can be easily 
obtained from it.  
 

5.1 The warehouse 
 
This example explores three inventory models of a warehouse. The first one is the inventory 
snapshot, where the inventory levels are measured every day and are placed in separate 
records in the database. The second model is the delivery status model, which contains one 
record for each delivery to the warehouse and the disposition of all the items is registered 
until they have left the warehouse. Finally, the third inventory model is the transaction 
model, which records every change of the status of delivery products as they arrive at the 
warehouse, are processed into the warehouse, etc. 
 
This example introduces two important concepts: the semi-additivity and the multistar 
model (also known as fact constellations). The former has already been introduced in 
Section 2 and refers to the fact that a measure cannot be summarized by using the sum 
function along a dimension. In this example, the inventory level (stock) of the warehouse is 
semi-additive, because it cannot be summed along time dimension, but it can be averaged 
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along the same dimension. The multistar (fact constellations) concept refers to the fact that 
the same MD model has multiple facts. 
 
To start with, in our approach we model multistar models by means of package diagrams. 
In this way, at the first level, we create a package diagram for each one of the facts 
considered in the model. At this level, connecting package diagrams means that a model 
will use elements (e.g. dimensions, hierarchies) defined in the other package. Figure 13 
shows the first level of the model formed by three packages that represent the different star 
schemas in the case study.  
 

 
Figure 13: Level 1 

 
Then, we explore each package diagram at the second level to define packages for each one 
of the facts and dimensions defined in the corresponding package diagram. Figure 14 shows 
the content of the package Inventory Snapshot Star at level 2. The fact package Inventory 
Snapshot Fact is represented in the middle of Figure 14, and the dimension packages 
(Product Dimension, Time Dimension, and Warehouse Dimension) are placed around the fact 
package. As can be seen, a dependency is drawn from the fact package to each one of the 
dimension packages, because the fact package comprises the whole definition of the star 
schema. At level 2, it is possible to create a dependency from a fact package to a dimension 
package or between dimension packages (when they share some hierarchy levels), but not 
from a dimension package to a fact package. 
 

Figure 14: Level 2 of Inventory Snapshot 
Star 

Figure 15: Level 2 of Inventory Transaction Star 

 
 
Figure 15 shows the content of the package Inventory Transaction Star at level 2. As in the 
Inventory Snapshot Star, the fact package is placed in the middle of the figure and the 
dimension packages are placed around the fact package in a star fashion. Three dimension 
packages (Product Dimension, Time Dimension, and Warehouse Dimension) have been 
previously defined in the Inventory Snapshot Star (Figure 14), and they are imported in this 
package. Therefore, the name of the package where it has been previously defined appears 
below the package name (from Inventory Snapshot Star).  
 
The content of the dimension and fact packages is represented at level 3. The diagrams at 
this level are only comprised of classes and their associations. For example, Figure 16 
shows the content of the package Warehouse Dimension at level 3. In a dimension package, a 
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class is drawn for the dimension class (Warehouse) and a class for each classification 
hierarchy level (ZIP, City, County, State, SubRegion, and Region). For the sake of simplicity, 
the methods of each class have not been depicted in the figure. As can be seen in Figure 16, 
Warehouse presents alternative path classification hierarchies: (i) ZIP, City, County, State, 
and (ii) SubRegion, Region, State. 
 

 
Figure 16: Level 3 of Warehouse Dimension 

 
Finally, Figure 17 shows the content of the package Inventory Snapshot Fact. In this package, 
the whole star schema is displayed: the fact class (Inventory Snapshot) is defined and the 
dimensions with their corresponding hierarchy levels are imported from the dimension 
packages. To avoid unnecessary details, we have hidden the attributes and methods of 
dimensions and hierarchy levels, but the measures of the fact are shown as attributes of the 
fact class: four atomic measures (quantity_on_hand, quantity_shipped, value_at_cost, and 
value_at_LSP), and three derived measures (number_of_turns, gross_profit, and gross_margin). 
The definition of the derived measures is included in the model by means of derivation 
rules. Regarding the additivity of the measures, only quantity_on_hand is semi-additive; 
because of this, an additivity rule has been added to the model. Finally, Warehouse presents 
alternative path classification hierarchies and Time and Product present multiple 
classification hierarchies, as can be seen in Figure 17. 
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Figure 17: Level 3 of Inventory Snapshot Fact 

 
Regarding the dynamic part of the model, let us suppose the following user's initial 
requirement on the MD model specified by the UML class diagram of Figure 17: ‘We wish 
to analyze the quantity_on_hand of products where the group of products is “Grocery” 
and the warehouse state is “Valencia”, grouped according to the product subgroup and 
the warehouse region and subregion, and ordered by the warehouse subregion and region’. 
On the left hand side of Figure 18, we can observe the graphical notation of the cube class 
that corresponds to this requirement. The measure to be analyzed (quantity_on_hand) is 
specified in the measure area. Constraints defined on dimension classification hierarchy 
levels (group and state) are included in the slice area, while classification hierarchy levels 
along which we are interested in analyzing measures (subgroup, region, and subregion) are 
included in the dice area. Finally, the available OLAP operations are specified in the CO 
(Cube Operations) section (in this example the CO are omitted to avoid unnecessary detail). 
On the right hand side of Figure 18 the OQL sentence corresponding to the cube class is 
shown. We can notice how the descriptor attributes from the MD model are used when the 
attributes of the hierarchy levels are omitted in the analysis. For example, the expression 
Warehouse.State="Valencia" of the cube class involves the use of the descriptor attribute 
from the State base class (Figure 16). 
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SELECT quantity_on_hand 
FROM Inventory_Snapshot i, i.is_warehouse iw, 
i.is_product ip 
WHERE 
iw.warehouse_subregion.subregion_region.region_state.S
tate_name = "Valencia" AND 
ip.product_subgroup.subgroup_group.Name = "Grocery" 
GROUP BY 
iw.warehouse_subregion.subregion_region.Region_name, 
iw.warehouse_subregion.Subregion_name, 
ip.product_subgroup.Name 
ORDER BY iw.warehouse_subregion.Subregion_name, 
iw.warehouse_subregion.subregion_region.Region_name 
 

Figure 18: An example of a user's initial requirement 

 
Regarding state diagrams, one state diagram is defined for each initial cube class.  The 
diagram specifies that certain OLAP operations lead users to cube classes that allow them 
to analyze the same data (the same measures along the same dimensions) in different ways. 
For example, in Figure 19 we can see the corresponding state diagram of the cube class 
definition of Figure 18. It may be observed, for example, that roll-up and drill-down 
operations applied on the classification hierarchies levels defined on the Warehouse and 
Product dimensions will allow us to navigate up and down along the classification 
hierarchies defined in both dimensions. 
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Figure 19: An example of state diagram 

 
On the other hand, an interaction diagram can also be defined for each UML class 
diagram. This interaction diagram shows interactions among cube classes, changed by 
OLAP operations such as rotate, pivot, slice, or dice. In Figure 20, we can see an example 
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of an interaction diagram, in which we have considered three cube classes that specify the 
user's initial requirements. We have then defined the OLAP operations needed to switch 
between these cube classes.  
 

Time.Year=‘1998’

Rotate (Time, Ø)-

Rotate (Ø, Time)

Slice (Time,ALL)

CC_2
CC_1

No condition is eliminated

No condition is introduced

Slice(Time.Year,  1998)

Cube classes

Operations

Transitions

Slice

Warehouse.State
Dice

quantity_on_hand
Measures

Time.Year=‘1998’
Slice

Warehouse.State
Time

Dice

quantity_on_hand
Measures

Time.Year=‘ALL’

CC_3

Slice

Warehouse.State
Dice

quantity_on_hand
Measures

 
Figure 20: An example of interaction diagram 

 

5.2 A large bank 
 
In this example, a DW for a large bank is presented. The bank offers a significant portfolio 
of financial services: checking accounts, savings accounts, mortgage loans, safe deposit 
boxes, and so on. 
 
This example introduces the following concepts: 
 

• Heterogeneous dimension: a dimension that describes a large number of 
heterogeneous items with different attributes. Kimball’s recommended technique is 
“to create a core fact table and a core dimension table in order to allow queries to 
cross the disparate types and to create a custom fact table and a custom dimension 
table for querying each individual type in depth”. However, our conceptual MD 
approach can provide an elegant and simple solution to this problem, thanks to the 
categorization of dimensions. 

• Categorization of dimensions: it allows us to model additional features for a 
dimension’s subtypes. 

• Shared classification hierarchies between dimensions: our approach allows two or 
more dimensions to share some levels of their classification hierarchies.  
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Figure 21 represents level 1, which comprises five star packages: Saving Accounts Star, 
Personal Loans Star, Investment Loans Star, Safe Deposit Boxes Star, and Mortgage Loans Star. 
For now, we will only center on the Mortgage Loans Star. The corresponding level 2 of this 
star package is depicted in Figure 22.  
 

 
Figure 21: Level 1 

 
Figure 22: Level 2 of Mortgage Loans Star 

 
Level 3 of Mortgage Loans Fact is shown in Figure 23. To avoid unnecessarily complicating 
the figure, three of the dimensions (Account, Time, and Status) with their corresponding 
hierarchies are not represented. Moreover, the attributes of the represented hierarchy levels 
have been omitted. The fact class (Mortgage Loans) contains four attributes that represent 
the measures: total, balance, and payment_number are atomic; whereas debt is derived (the 
corresponding derivation rule is placed next to the fact class). None of the measures is 
additive. Consequently, the additivity rules are also placed next to the fact class. 
 
In this example, the dimensions present two special characteristics. On one hand, Branch 
and Customer share some hierarchy levels: ZIP, City, County, and State. On the other hand, 
the Product dimension has a generalization-specialization hierarchy. This kind of hierarchy 
allows us to easily deal with heterogeneous dimensions: the different items can be grouped 
together in different categorization levels depending on their properties. 
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Figure 23: Level 3 of Mortgage Loans Fact 

 

5.3 The college course 
 
This example introduces the concept of the factless fact table (FFT): fact tables for which 
there are no measured facts. Kimball distinguishes two major variations of FFT: event 
tracking tables and coverage tables. In this example we will focus on the first type. 
 
Event tracking tables are used when a large number of events need to be recorded as a 
number of dimensional entities coming together simultaneously. In this example, we will 
model daily class attendance at a college. In Figure 24 and Figure 25, level 1 and level 2 of 
this model are depicted respectively. In this case, level 1 only contains one star package. 
 

 

 
Figure 24: Level 1 

 
Figure 25: Level 2 of College Course Star 

 
Figure 26 shows level 3 of College Course Fact. For the sake of simplicity, the attributes and 
methods of every class have not been depicted in the figure. As shown, the fact class 
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College Course contains no measures because it is a FFT. In FFT, the majority of the 
questions that users create imply counting the number of records that satisfy a constraint, 
such as: which facilities were used most heavily? Or, which courses were the least 
attended? 
 
Regarding the dimensions, Course and Time present multiple classification hierarchies, 
Professor and Student share some hierarchy levels, and Facility presents a categorization 
hierarchy. 
 

 
Figure 26: Level 3 of College Course Star 

 

6 Conclusions 
 
In this paper, we have presented an OO conceptual modeling approach, based on the UML, 
to design DWs, MD databases and OLAP applications. Structural aspects of MD modeling 
are easily specified by means of a UML class diagram in which classes are related through 
association and shared aggregation relationships. In this context, thanks to the flexibility 
and the power of the UML, all the semantics required for proper MD conceptual modeling 
are considered, such as many-to-many relationships between facts and particular 
dimensions, multiple path hierarchies of dimensions, the strictness and completeness of 
classification hierarchies, and categorization of dimension attributes. Regarding dynamic 
aspects, we provide a UML-compliant class graphical notation (called cube classes) to 
specify users' initial requirements at the conceptual level. We have also described how we 
use state and interaction diagrams to model the behavioral aspects of the system regarding 
these cube classes based on the set of the applied OLAP operations. Moreover, we have 
sketched out how to represent a conceptual MD model accomplished by our approach in the 
ODMG standard as a previous step for a further implementation of MD models into OODB 
and ORDB. Furthermore, to facilitate the interchange of MD models, we provide a DTD 
from which we can obtain valid XML documents. Finally, we have selected three case 
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studies from Kimball’s book and modeled them following our approach. This shows that 
our approach is a very easy-to-use yet powerful conceptual model that represents main 
structural and dynamic properties of MD modeling in an easy and elegant way.  
 
Currently, we are working on several issues. On one hand, we are extending our approach 
to key issues in MD modeling, including temporal and slowly changing dimensions. On the 
other hand, we are also working on the definition of a formal constraint language for 
ODMG that allows us to represent the MD modeling necessarily ignored in the generation 
process from our approach based on the UML.  
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Appendix 1 
 
 In this section we include the whole DTD that we have defined to represent MD 
models in XML. This DTD allows us to represent both structural and dynamic properties of 
MD models and initial requirements (cube classes). 
 
<!ENTITY % Boolean '(true|false)'> 
<!ENTITY % Multiplicity '(0|1|M|1..M)'> 
<!ENTITY % Operator '(eq|lt|gt|let|get|noteq|like|notlike|in|notin)'> 
<!ELEMENT MDMODEL (PKSCHEMAS, DEPENDENCIES, CUBECLASSES)> 
<!ATTLIST MDMODEL 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 creationDate CDATA #IMPLIED 
 lastModified CDATA #IMPLIED 
 description CDATA #IMPLIED 
 responsible CDATA #IMPLIED> 
<!ELEMENT PKSCHEMAS (PKSCHEMA*)> 
<!ELEMENT PKSCHEMA (PKFACT?, PKDIMS, IMPPKDIMS, DEPENDENCIES)> 
<!ATTLIST PKSCHEMA 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 caption CDATA #IMPLIED 
 description CDATA #IMPLIED> 
<!ELEMENT PKFACT (FACTCLASS?)> 
<!ATTLIST PKFACT 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 caption CDATA #IMPLIED 
 description CDATA #IMPLIED> 
<!ELEMENT PKDIMS (PKDIM*)> 
<!ELEMENT PKDIM (DIMCLASS?, BASECLASSES, IMPBASECLASSES)> 
<!ATTLIST PKDIM 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 caption CDATA #IMPLIED 
 description CDATA #IMPLIED> 
<!ELEMENT IMPPKDIMS (IMPPKDIM*)> 
<!ELEMENT IMPPKDIM (IMPDIMCLASS?, BASECLASSES, IMPBASECLASSES)> 
<!ATTLIST IMPPKDIM 
 id ID #REQUIRED 
 pkdim IDREF #REQUIRED 
 name CDATA #REQUIRED 
 caption CDATA #IMPLIED 
 description CDATA #IMPLIED> 
<!ELEMENT IMPDIMCLASS (RELATIONASOCS, RELATIONCATS)> 
<!ATTLIST IMPDIMCLASS 
 id ID #REQUIRED 
 dimclass IDREF #REQUIRED 
 name CDATA #REQUIRED 
 caption CDATA #IMPLIED 
 description CDATA #IMPLIED 
 isTime %Boolean; "false"> 
<!ELEMENT DEPENDENCIES (DEPENDENCY*)> 
<!ELEMENT DEPENDENCY EMPTY> 
<!ATTLIST DEPENDENCY 
 id ID #REQUIRED 
 start IDREF #REQUIRED 
 end IDREF #REQUIRED> 
<!ELEMENT FACTCLASS (FACTATTS, METHODS, SHAREDAGGS)> 
<!ATTLIST FACTCLASS 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 caption CDATA #IMPLIED 
 description CDATA #IMPLIED> 
<!ELEMENT FACTATTS (FACTATT*)> 
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<!ELEMENT FACTATT (ADDITIVITY*)> 
<!ELEMENT ADDITIVITY EMPTY> 
<!ATTLIST ADDITIVITY 
 id ID #REQUIRED 
 dimclass IDREF #REQUIRED 
 isNOT %Boolean; "false" 
 isSUM %Boolean; "false" 
 isMAX %Boolean; "false" 
 isMIN %Boolean; "false" 
 isAVG %Boolean; "false" 
 isCOUNT %Boolean; "false"> 
<!ATTLIST FACTATT 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 atomic %Boolean; "true" 
 type CDATA #REQUIRED 
 description CDATA #IMPLIED 
 initial CDATA #IMPLIED 
 derivationRule CDATA #IMPLIED 
 OID %Boolean; "false"> 
<!ELEMENT METHODS (METHOD*)> 
<!ELEMENT METHOD EMPTY> 
<!ATTLIST METHOD 
 id ID #REQUIRED 
 name CDATA #REQUIRED> 
<!ELEMENT SHAREDAGGS (SHAREDAGG*)> 
<!ELEMENT SHAREDAGG EMPTY> 
<!ATTLIST SHAREDAGG 
 id ID #REQUIRED 
 dimclass IDREF #REQUIRED 
 name CDATA #IMPLIED 
 description CDATA #IMPLIED 
 roleA %Multiplicity; "M" 
 roleB %Multiplicity; "1"> 
<!ELEMENT DIMCLASS (DIMATTS, RELATIONASOCS, RELATIONCATS, METHODS)> 
<!ELEMENT DIMATTS (DIMATT*)> 
<!ELEMENT DIMATT EMPTY> 
<!ATTLIST DIMATT 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 atomic %Boolean; "true" 
 type CDATA #REQUIRED 
 description CDATA #IMPLIED 
 initial CDATA #IMPLIED 
 derivationRule CDATA #IMPLIED 
 OID %Boolean; "false" 
 D %Boolean; "false"> 
<!ELEMENT BASECLASSES (BASECLASS*)> 
<!ELEMENT BASECLASS (DIMATTS, (RELATIONASOCS | RELATIONCATS)?, METHODS)> 
<!ELEMENT RELATIONASOCS (RELATIONASOC*)> 
<!ELEMENT RELATIONASOC EMPTY> 
<!ATTLIST RELATIONASOC 
 id ID #REQUIRED 
 child IDREF #REQUIRED 
 name CDATA #IMPLIED 
 description CDATA #IMPLIED 
 roleA %Multiplicity; "1" 
 roleB %Multiplicity; "M" 
 completeness %Boolean; "false"> 
<!ELEMENT RELATIONCATS (RELATIONCAT*)> 
<!ELEMENT RELATIONCAT EMPTY> 
<!ATTLIST RELATIONCAT 
 id ID #REQUIRED 
 child IDREF #REQUIRED 
 name CDATA #IMPLIED 
 description CDATA #IMPLIED> 
<!ATTLIST BASECLASS 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 caption CDATA #IMPLIED 
 description CDATA #IMPLIED> 
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<!ATTLIST DIMCLASS 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 caption CDATA #IMPLIED 
 description CDATA #IMPLIED 
 isTime %Boolean; "false"> 
<!ELEMENT IMPBASECLASSES (IMPBASECLASS*)> 
<!ELEMENT IMPBASECLASS (RELATIONASOCS | RELATIONCATS)?> 
<!ATTLIST IMPBASECLASS 
 id ID #REQUIRED 
 baseclass IDREF #REQUIRED 
 name CDATA #REQUIRED 
 caption CDATA #IMPLIED 
 description CDATA #IMPLIED> 
<!ELEMENT CUBECLASSES (CUBECLASS*)> 
<!ELEMENT CUBECLASS (MEASURES, SLICES, DICES)> 
<!ELEMENT MEASURES (MEASURE*)> 
<!ELEMENT MEASURE EMPTY> 
<!ATTLIST MEASURE 
 factatt IDREF #REQUIRED> 
<!ELEMENT SLICES (SLICE*)> 
<!ELEMENT SLICE EMPTY> 
<!ATTLIST SLICE 
 dimattORlevel IDREF #REQUIRED 
 operator %Operator; #REQUIRED 
 value CDATA #REQUIRED> 
<!ELEMENT DICES (DICE*)> 
<!ELEMENT DICE EMPTY> 
<!ATTLIST DICE 
 level IDREF #REQUIRED> 
<!ATTLIST CUBECLASS 
 id ID #REQUIRED 
 name CDATA #REQUIRED 
 creationDate CDATA #IMPLIED 
 lastModified CDATA #IMPLIED 
 description CDATA #IMPLIED> 

 


