
Metaphoricity Detection in Adjective-Noun Pairs

Detección de Metaforicidad en Pares Adjetivo-Sustantivo

Andrés Torres Rivera, Antoni Oliver, Marta Coll-Florit
Universitat Oberta de Catalunya

{atorresrive, aoliverg, mcollfl}@uoc.edu

Abstract: In this paper we propose a neural network approach to detect the
metaphoricity of Adjective-Noun pairs using pre-trained word embeddings and word
similarity using dot product. We found that metaphorical word pairs tend to have a
lower dot product score while literal pairs a higher score. On this basis, we compared
seven optimizers and two activation functions, from which the best performing pairs
obtained an accuracy score of 97.69% and 97.74%, which represents an improvement
of 6% over other current approaches.
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Resumen: En este art́ıculo proponemos un acercamiento mediante redes neuronales
para la detección de la metaforicidad de pares Adjetivo-Sustantivo empleando word
embeddings pre-entrenados y similitud de palabras mediante el producto escalar.
Encontramos que los pares de palabras metafóricos tienden a tener un producto
escalar bajo mientras que los pares no metafóricos un resultado más alto. Bajo
este supuesto, comparamos siete optimizadores y dos funciones de activación, de las
cuales los pares con mejor desempeño obtuvieron una exactitud de 97.69% y 97.74%,
que representa una mejora de 6% sobre otros enfoques actuales.
Palabras clave: PLN, Metáfora, Word Embeddings, Aprendizaje Profundo

1 Introduction

The automatic detection of figurative lan-
guage is one of the most challenging tasks in
Natural Language Processing (NLP). Specif-
ically, metaphor is the most studied process,
as it is omnipresent in natural language text
and therefore it is crucial in automatic text
understanding (Shutova, 2010).

According to the Conceptual Metaphor
Theory (Lakoff and Johnson, 1980), a
metaphor represents a mapping of abstract
concepts (target domain) to more concrete or
tangible phenomena (source domain), as in
the following examples, which are instances
of the conceptual metaphor Time is Money:

You’re wasting my time.

This gadget will save you hours.

Two main kinds of metaphor can be dis-
tinguished: conventional metaphors, which
are commonly used in everyday language (as
the examples above), and novel, literary, cre-
ative or unconventional metaphors, which
surprise our imagination.

The study of metaphor is a prolific area
of research in Cognitive Linguistics, being

the Metaphor Identification Procedure (MIP)
(Pragglejaz Group, 2007) and its deriva-
tive MIPVU (Steen et al., 2010) the most
standard methods for manual metaphor de-
tection. Moreover, in the area of Corpus
Linguistics, some methods have been de-
veloped for annotation of metaphor in cor-
pora (Shutova, 2017; Coll-Florit and Cli-
ment, 2019).

In reference to NLP, methodologies for
automatic processing of metaphors can be
classified into three main categories (Veale,
Shutova, and Klebanov, 2016):

• Corrective approaches, the earliest ones,
where metaphors are considered as a de-
viation of literal language that must be
corrected.

• Analogical approaches where metaphors
are viewed as some cross-domain trans-
fer of semantic structure.

• Schematic approaches where each
metaphorical expression is understood
as an instance of a more general
metaphorical schema.
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All these approaches have the following
points in common: (1) assume the existence
of a literal (or at least normative) meaning of
words; (2) assume that some form of struc-
tural mapping is required to obtain an inter-
pretation of the metaphor; and (3) assume
that metaphor itself is a unit of conceptual
representation.

According to Shutova (2010), there are
two main tasks in the automatic processing
of metaphors:

• Metaphor recognition: distinguishing
between literal and metaphorical lan-
guage in a text.

• Metaphor interpretation: identifying the
intended literal meaning of a metaphor-
ical expression.

Recently, techniques for metaphor recog-
nition are shifting from classical machine
learning techniques, as classifiers and deci-
sion trees, to the use of more advanced Ar-
tificial Intelligence techniques, as neural net-
works.

The main goal of this paper is to present
a new model for metaphor recognition, and
specifically for metaphoricity detection of
adjective-noun pairs, from a neural network
approach. Below we describe the main re-
lated works (section 2). Next we present our
methodology and model (section 3) and the
main results (section 4). We finish with the
discussion and our overall conclusions (sec-
tions 5 and 6).

2 Related work

Current approaches regarding metaphor
recognition include the works of Rosen
(2018), Wu et al. (2018) and Mu, Yan-
nakoudakis, and Shutova (2019), which fo-
cus on the detection of metaphorical in-
stances in general corpora. Our work fo-
cuses on a different task within the scope of
metaphor recognition that consists on detect-
ing the metaphoricity of adjective-noun (AN)
pairs in English as isolated units. Current
approaches on this task include the works
by Turney et al. (2011), Tsvetkov et al.
(2014), Gutierrez et al. (2016) and Bizzoni,
Chatzikyriakidis, and Ghanimifard (2017).

In relation to metaphor recognition in gen-
eral corpora, Rosen (2018) developed an al-
gorithm using deep learning techniques that

uses a representation of metaphorical con-
structions in an argument - structure level.
The algorithm allows for the identification of
source-level mappings of metaphors. The au-
thor concludes that the use of deep learning
algorithms including construction grammat-
ical relations in the feature set improves the
accuracy of the prediction of metaphorical
source domains.

Wu et al. (2018) propose to use a Convo-
lutional Neural Network - Long-Short Term
Memory (CNN-LSTM) with a Conditional
Random Field (CRF) or Softmax layer for
metaphor detection in texts. They combine
CNN and LSTM to capture both local and
long-distance contextual information to rep-
resent the input sentences.

Some authors (Mu, Yannakoudakis, and
Shutova, 2019) argue that using broader dis-
course features can have a substantial posi-
tive impact for the task of metaphorical iden-
tification. They obtain significant results us-
ing document embeddings methods to rep-
resent an utterance and its surrounding dis-
course. With this material a simple gradient
boosting classifier is trained.

With regard to metaphoricity detection in
AN pairs, the work of Turney et al. (2011)
is based on the hypothesis that metaphorical
word usage is correlated with the degree of
abstractness of the context of a word. The
idea comes from research in Cognitive Lin-
guistics that views metaphor as a cognitive
strategy to map knowledge between two do-
mains: one of the domains is familiar, well-
understood or concrete; and the other do-
main is unfamiliar, less understood or more
abstract. They present an algorithm to clas-
sify a word sense in a given context as lit-
eral (denotative) or metaphorical (connota-
tive) and evaluate the algorithm in a set of
annotated AN phrases. One of the strengths
of the approach is that it can generalize to
new words outside the training data.

In Tsvetkov et al. (2014) a model to dis-
criminate whether a syntactic construction
has a literal or metaphoric sense is presented.
The model uses lexical semantic features of
the words in the construction. One of the ad-
vantages of the model is that it can be trans-
ferred to other languages by pivoting through
a bilingual dictionary. They work with two
syntactic constructions: subject-verb-object
(SVO) and, like in our study, adjective-noun
(AN) tuples.
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In Gutierrez et al. (2016) a test case for
compositional distributional semantic mod-
els (CDSMs) is presented. The authors pro-
pose a method to learn metaphors as lineal
transformations in a vector space. They show
that modeling metaphor explicitly within a
CDSM can improve the resulting vector rep-
resentations. As metaphors show a high de-
gree of systematicity, it is possible to learn
linear transformations for the representation
of metaphorical mappings for adjetives in the
same semantic domain.

Finally, in Bizzoni, Chatzikyriakidis, and
Ghanimifard (2017) a single neural network
with pre-trained vector embeddings is used to
identify metaphors in AN pairs. The system
is able to provide a metaphoricity score as an
output. Table 1 presents the accuracy score
of the current approaches in AN metaphoric-
ity detection which establishes a current per-
formance of 91% in accuracy.

The approaches proposed by Turney et al.
(2011) and Tsvetkov et al. (2014) implement
feature engineering (FE) using small anno-
tated (Ann.) datasets. Currently, Gutierrez
et al. (2016) and Bizzoni, Chatzikyriakidis,
and Ghanimifard (2017) opt for approaches
that do not implement FE, instead both
present models trained using embeddings: a
distributional semantic model (DSM) in the
first case, and word2vec in the second case.
In both instances the training and testing
data was generated using the AN corpus com-
piled by Gutierrez et al. (2016).

A FE Ann.

Turney et al. (2011) 0.79 Y 100
Tsvetkov et al. (2014) 0.85 Y 200
Gutierrez et al. (2016) 0.81 N 8592
Bizzoni et al. (2017) 0.91 N 8592

Table 1: Accuracy score comparison of
metaphorical AN pairs detection

3 Methodology

Our study is based on the annotated AN
pairs corpus presented by Gutierrez et al.
(2016), which is composed by 8,592 word
pairs that are a combination of 23 unique ad-
jectives and 3,418 unique nouns. This cor-
pus can be divided in two subsets: one com-
posed by 4,601 metaphoric pairs and another
composed by 3,991 literal or non metaphor-
ical pairs with an interannotator reliability

of κ = 0.80 and a standard error (SE) of
0.2. Both subsets include cases of metaphoric
pairs with each of the 23 adjectives, but in
the case of nouns the metaphoric subset con-
tains 2,027 unique nouns whereas the non
metaphoric subset 1,547 unique nouns.

Gutierrez et al. (2016) focused on adjec-
tives that function as source domain words
in productive conceptual metaphors (CM).
Some examples of this kind of CM found in
the AN corpus include: bright day, rough
character, heavy expansion, and bitter com-
petition. As shown in Table 2, the 23 ad-
jectives were divided in eight source-domain
categories.

Source Adjectives

Temperature Cold, heated, icy, warm
Light Bright, brilliant, dim
Texture Rough, smooth, soft
Substance Dense, heavy, solid
Clarity Clean, clear, murky
Taste Bitter, sour, sweet
Strength Strong, weak
Depth Deep, shallow

Table 2: Categories of the 23 adjectives that
compose the AN corpus

We used pre-trained word vectors that
were trained using part of the Google
News dataset. This model contains 300-
dimensional vectors with a context window
size of 5 (Mikolov et al., 2013a; Mikolov et
al., 2013b; Mikolov, Yih, and Zweig, 2013; Le
and Mikolov, 2014). We opted to use these
vectors in order to reproduce the process fol-
lowed by Bizzoni, Chatzikyriakidis, and Gha-
nimifard (2017).

3.1 Dot product as a similarity
measure

Within an Euclidean space, the dot prod-
uct (Equation 1) is the result of multiplying
the magnitudes of two equal-length vectors
and the cosine of the angle between them.
The result of this operation is a scalar value
that can be interpreted as the similarity be-
tween to vectors: vectors that have a low
score tend to be less similar while vectors that
have a higher score tend to be more similar.
Word embeddings are n-dimensional vectors
that contain semantic and lexical information
from all the words that compose the train-
ing vocabulary. Computing the dot prod-
uct between two given word vectors might
indicate the similarity relation that exists be-
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tween them, as shown by Mikolov, Yih, and
Zweig (2013), inasmuch as similar words tend
to appear near each other within a vector
space.

A · B = ||A|| ||B|| cos θ (1)

After computing the dot product for each
AN pair, we observed that metaphorical pairs
presented a mean result of 0.8548 with an
standard deviation (SD) of 0.6865, while the
mean result for literal pairs was 1.2545 with
a SD of 0.8418. As shown in Figure 1,
metaphorical AN pairs (blue) tend to have a
lower dot product score while literal AN pairs
(orange) have a higher score, which might in-
dicate that literal AN pairs tend to be more
similar, and metaphorical AN pairs are com-
binations of words that are less similar.
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Figure 1: Dot product comparison of
metaphorical and literal AN pairs

This values are observed across all sources,
Table 3 shows the mean dot product score by
source and tag (Literal or Metaphoric). Only
the source Strength has a higher metaphoric
mean dot product in comparison with its lit-
eral counterpart. In all the other sources the
literal AN pairs have a higher mean dot prod-
uct result. In some cases such as the sources
Depth and Texture this score almost doubles
the value obtained by the metaphoric AN
pairs.

The five highest dot product scores were
obtained by literal AN pairs belong to the
Temperature source, such as: icy snow, icy
arctic, icy blizzard, cold child and icy pre-
cipitation. On the other hand, the lowest
dot product score where mostly obtained by
metaphorical AN pairs that belong to dif-
ferent sources, such as: clean datum, bitter
identification, brilliant parent and rough cus-
tomer, with one instance of the literal pair
shallow outfit.

Source Tag Mean SD

Clarity Lit. 0.957033 0.705107
Met. 0.733197 0.544971

Depth Lit. 1.564873 0.865550
Met. 0.778630 0.553173

Light Lit. 1.276814 0.859143
Met. 0.824224 0.647932

Strength Lit. 0.628803 0.433746
Met. 0.799933 0.583103

Substance Lit. 1.019069 0.592838
Met. 0.650521 0.548152

Taste Lit. 1.996791 0.884432
Met. 1.270854 0.887818

Temperature Lit. 1.352197 0.938974
Met. 0.993028 0.770670

Texture Lit. 1.209835 0.585611
Met. 0.699859 0.580966

Table 3: Mean dot product score and stan-
dard deviation (SD) by source and tag

3.2 Model description

Our model consists of a variation of the first
architecture proposed by Bizzoni, Chatzikyr-
iakidis, and Ghanimifard (2017). Under this
architecture, a network is a generalization of
the additive composition model (Equations
2 and 3) proposed by Mitchell and Lapata
(2010), but using a weight matrix W that
modifies all feature dimensions at the same
time.

p = (u,v; θ) (2)

p = W T
adju +W T

nounv + b (3)

This approach can be implemented by
concatenating word vectors before feeding
them to a neural network. In this case, the
parameter function is defined according to
equations (4) and (5):

W =

[
Wadj

Wnoun

]
(4)

p = fθ(u,v) = W T

[
u
v

]
+ b (5)

Using the observed scores of the dot prod-
ucts of the AN pairs, we propose a varia-
tion of the multiplicative model presented by
Mitchell and Lapata (2010), where instead of
computing tensor multiplication we compute
the dot product of each AN pair using their
embeddings. With this modification we ob-
tain the projection of vector u over v (Equa-
tion 6), and thus the network is fed a scalar
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value that can be interpreted as the similar-
ity relation that exists between a given word
vector pair.

p = fθ(u,v) = W T
adju ·W T

nounv + b (6)

To evaluate the performance of our model
we compared the accuracy score of 7 op-
timizers (Adam, Nadam, Adamax, Ada-
grad, Adadelta, Stochastic Gradient Descent
[SGD] and RMS Prop) with ReLu and lin-
ear function as activation functions. In all
cases we set binary cross-entropy as the loss
function, and used a 10 K-fold cross valida-
tion to obtain the mean accuracy score of
each optimizer-activation pair. After per-
forming this evaluation we proceeded to eval-
uate the best performing models to compare
their mean accuracy error, precision, recall
and f1-score. The model was trained using
the same parameters proposed by Bizzoni,
Chatzikyriakidis, and Ghanimifard (2017),
i.e. it was trained for 20 epochs using 500
examples for training and the rest for test-
ing.

4 Results

After training each model we calculated the
mean accuracy using 10 K-Fold cross valida-
tion. As shown in Table 4, the set of op-
timizers using the linear activation function
obtained a mean of 97% accuracy. The high-
est score was obtained by the model trained
using the Adagrad optimizer, which obtained
an accuracy equal to 97.69%, while the low-
est scoring model was the one trained using
SGD with an accuracy equal to 69.97%.

Optimizer A SD

Adam 97.58 0.4622
Nadam 97.62 0.5270
Adamax 97.56 0.5799
Adagrad 97.69 0.5182
Adadelta 97.65 0.5798
SGD 69.49* 15.0106
RMS Prop 97.48 0.3358

Table 4: Linear Function Accuracy Score (A)
and Standard Deviation (SD)

The second set of optimizers was trained
using ReLu as activation function. In this
case the overall scores where around 97%, the
highest accuracy score was 97.74%, obtained
by the model trained using Nadam+ReLu.

We can also observe a considerable improve-
ment in the case of SGD+ReLu, which ob-
tained an accuracy score of 92.16%. This
represents an improvement of 22.67% in com-
parison with its SGD+linear function equiv-
alent.

Optimizer A SD

Adam 97.63 0.4012
Nadam 97.74 0.4475
Adamax 97.44 0.5505
Adagrad 97.61 0.4909
Adadelta 97.51 0.4429
SGD 92.16* 3.8450
RMS Prop 97.52 0.4888

Table 5: ReLu Accuracy Score (A) and Stan-
dard Deviation (SD)

Overall, we can observe an improvement
of 6% over the 91% of the current approach.
Nevertheless, using accuracy as the only
evaluation metric can lead to misinterpre-
tations since an increase in accuracy might
not indicate an increase in predictive ability.
To ensure that the increase in accuracy of
this methodology corresponds to an increase
in performance, we proceeded to compare
the two optimizer+activation pairs that had
the highest accuracy score (Adagrad+Linear
function, and Nadam+ReLu) using precision,
recall and f1-score, in order to ensure that the
models are capable of generalization.

Opt. MAE P R F1

Adagrad 0.0305 0.9675 0.9829 0.9751
Nadam 0.0325 0.9645 0.9785 0.9714

Table 6: Mean Absolute Error (MAE), Preci-
sion (P), Recall (R) and f1-Score (F1) results
of the Adagrad and Nadam Optimizers

In Table 6 it can be observed that the Ada-
grad+Linear function model had better per-
formance than the Nadam+ReLu model in
all cases that were evaluated, mainly in recall
where the Adagrad+Linear function model
obtained 98.29%. In the case of the f1-metric,
the Adagrad+Linear function model had bet-
ter performance by a margin of 0.37%. Nev-
ertheless, both models present a significant
improvement over the current state of the art.
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5 Discussion

The multiplicative models presented by
Mitchell and Lapata (2010) operate using
tensor multiplication or word vector cross
products. While Bizzoni, Chatzikyriakidis,
and Ghanimifard (2017) analyzed the perfor-
mance of a multiplicative approach, this op-
eration might have created a new vector or
representation that lost the lexical informa-
tion provided by the embeddings, and there-
fore the performance of the model.

Vector concatenation maintains the se-
quence and order of the AN pairs that are
being feed to the network, but it does not
take into account their lexical or semantic re-
lationships. While the dot product of word
vectors loses the word order, this measure can
interpret the similarity between the word pair
that is being analyzed. Moreover, since all
the AN pairs follow the same structure, in
this context word order or word vector order
might be of less importance than the seman-
tic relation between them.

A scalar value reduces the dimensionality
of the input from W ∈ R300×600 and b ∈ R300

to a single scalar value W ∈ R300×1, thus
producing a simpler model with a single fea-
ture created based on the word vectors of
each component of each AN pair. In our
case the metaphoricity vector interprets this
scalar value as the lexical-semantic relation
between each pair and obtains a representa-
tion that determines its metaphoricity.

Regarding the dot product scores of the
source Strength, we used a t-distributed
stochastic neighbor embedding (t-SNE) ini-
tialized with principal component analysis
(PCA) to reduce the dimensionality of the
embeddings from 300 to 2 to visualize the ad-
jectives and their pairing nouns. In Figure 2
it can be observed that nouns (“x”1) seem to
cluster in the center of the vector space along
with both Strength adjectives (“triangle”).

When performing the same analysis with
other sources such as Depth2 (Figure 3), the
plot shows that nouns tend to be distributed
throughout the vector space in a more sparse
manner, which could explain why in the case
of Strength metaphorical AN pairs tend to
have a higher dot product mean.

1The gray dots represent all the remaining nouns
and adjectives of the vocabulary.

2We have chosen Depth because it has a similar
number of unique nouns (638) as Strength (625).
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Figure 2: Strength t-SNE-PCA plot
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Figure 3: Depth t-SNE-PCA plot

6 Conclusion

In this paper we have presented an approach
to AN metaphor detection by implementing
a fully connected neural network using pre-
trained word embeddings. Our multiplicative
model consists in computing the dot prod-
uct between the word vectors of each of the
components of the AN pair that is fed to
the network. By reducing the dimensional-
ity of the input parameter, this approach in-
troduces a simpler approach to AN metaphor
detection while improving the performance of
the model.

We evaluated seven optimizers paired with
two different activation functions, and in
most cases every combination obtained a
higher accuracy score in comparison with the
current state of the art: an overall of 97%
accuracy which represents an improvement
of 6% over the 91% reported by Bizzoni,
Chatzikyriakidis, and Ghanimifard (2017).
To further asses our results we evaluated the
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top performing models using precision, recall,
and f1-score which was not reported in the
related works.

Both models obtained 97% in f1-score,
and more precisely –after validating the re-
sults using 10 K-fold cross validation– the
Adagrad+Linear function model obtained
97.51% and the Nadam+ReLu 97.14%. In
each instance the only training data where
the pre-trained Google News word2vec em-
beddings, no other features were used during
the training process.
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