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Study of active vibration isolation systems considering isolator – structure 

interaction  

Pérez-Aracil, Jorge1; Pereira, Emiliano2; Díaz, Iván M.3;  Reynolds, Paul1

ABSTRACT 

Many technological applications require precise alignment between different devices to their correct 

development. The unwanted vibrations transmitted through the support to the payload can produce 

misalignment and this may entail high costs and loss of performance. Vibration isolation techniques 

have been proposed as a cost effective and more efficient alternative. This implies the insertion of an 

isolator between the vibration source and the payload. Depending on the configuration of the isolator, 

two different techniques can be used: 1) passive vibration isolation, 2) active vibration isolation. As it 

has been proved, the use of active vibration techniques within this application is best at improving 

overall performance. In this work, the initial research considerations on the improvement of the current 

state of active vibration isolation are presented. In addition, the interaction phenomenon between 

single – axis isolator and the flexible support system on which it is supported is studied. The dynamic 

requirements of the vibration isolation problem are identified and a study of the tuned parameters of 

a controller is included.  

Keywords: vibration isolation, active vibration control, isolator-structure interaction, dynamic modelling. 

1. INTRODUCTION

Precise alignment possesses a key role in many applications, being: research facilities as Diamond Light 

Source (DLS)  [1], space applications [2]–[5] and private manufacturers. The main problem with these 

applications is the undesired vibrations, which may produce variations in the required position, and 

consequently, a loss in the performance of the system. Vibration isolation techniques have been 

presented as a more efficient solution [6]–[8], which implies the use of an isolator situated between the 

vibration source and the payload. Two different types of techniques can be used: 1) passive vibration 

isolation, 2) active vibration isolation. There are still a few issues that must deal with in the active 

vibration isolation (AVI) systems, such as structure – isolator interaction and more efficient control laws, 

that should be clearly geared to practical implementation.  

1 Vibration Engineering Section, College of Engineering, Mathematics and Physical Sciences. University of 
Exeter. (United Kingdom). jp696@exeter.ac.uk (Corresponding author); p.reynolds@exeter.ac.uk 
2 Escuela Politécnica Superior. University of Alcalá (Spain). emiliano.pereira@uah.es  
3 E.T.S. Ingenieros de Caminos, Canales y Puertos. Universidad Politécnica de Madrid. (Spain). 
ivan.munoz@upm.es  
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Figure 1. Transmissibility magnitude curve of a passive isolator for different values of damping 𝑐𝑝. 

In passive vibration isolation (PVI) systems, the isolator only reacts to the relative displacement 

between the platform and the payload. The ratio of both displacements (𝑥𝑝(𝑡)/𝑥𝑏(𝑡)), see the 

schematic representation of an isolator in Fig. 1,  is called transmissibility [9], and it is used to analyse 

the performance of the isolator. In Fig. 1, a representation of the transmissibility of a generic single – 

axis isolator has been represented in frequency domain for different values of damping. As it can be 

observed, the increment of damping reduces the transmissibility at the natural frequency of the 

isolator. However, isolation occurs for excitation frequencies  𝜔 > √2𝜔𝑛𝑝
, 𝜔𝑛𝑝

 being the natural

frequency of the isolator, although it is important to note that the roll-off rate decreases as the damping 

increases. The response of the isolator could be improved making it softer, which implies a reduction 

of the natural frequency, increasing that the frequency band of the excitation that can be rejected. For 

that purpose, negative stiffness was introduced by Platus in 1992 [10]. This technique reduces the 

stiffness of the global system using nonlinearities as spring orientation or buckling [11].  Nonetheless, 

they are not suitable for all applications in which vibration isolation is required, since their 

implementation is not easy, and they do not present some important characteristic that active systems 

do, as detailed below.  

The AVI systems are those that, in addition to the passive isolator, sensor, signal processor and an 

actuator are also part of the isolation system, showing important differences to PVI systems [12]. On 

the one hand, when these elements work together, some issues such as stability of the control system, 

real-time processing, inherent actuator dynamics and the influence of the support structure on its 

performance make AVI design and implementation a challenging task. On the other hand, AVI systems 

present many advantages when they are compared with PVI systems. Some of the advantages are: 1) 

quasi-zero static deflection, 2) the possibility to change the position of the payload, 3) the possibility to 

create a softer system than PVI systems which will in turn improve the response for low frequencies, 
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keeping an optimal performance for any input and, 4) the capability to adapt the control to the possible 

changes in the system and the excitation [12].  

The study of new ways of improving the current state in vibration isolation of multiple synchronized 

devices is the main objective of this research, and for that purpose different control strategies must be 

studied. Their implementation in real scenarios is an important point in the research development. For 

that, the use of electrodynamic shakers becomes very important. They are key devices  in vibration 

control [13]–[16]. The possibility to change their configuration allows to implement AVI controllers, 

enabling performance to be evaluated.  

This work studies a non-developed isolation problem, which consists of an electrodynamic shaker 

placed on a simply supported beam. The novelty is that the moving mass of the electrodynamic shaker 

is not negligible compared with the modal mass of the beam. In other words, there is an interaction 

between force exerted by the actuator and acceleration of the beam. The dynamic model of this system 

together with an example of controller is included in this work. The dynamic model of the system is 

developed and explained in Section 2, an example of application is done in Section 3 and conclusions 

and on-going works are presented in Section 4.  

2. VIBRATION ISOLATION MODELLING

In this section, a dynamic model of an active isolator situated on a support structure has been made. 
The interaction isolator – support structure has been considered, the dynamic requirements are 
identified, and a controller is proposed.  

Figure 2. Schematic of a single axis active isolator system mounted on a flexible support. 

The general schematic of the problem presented here is shown in Fig. 2. The dynamic parameters of 
the isolator and support system are represented by the subscripts 𝑝 and 𝑏, respectively. Whereas, 
𝑚𝑖 , 𝑐𝑖 , 𝑘𝑖  represent the mass, damping and stiffness of system 𝑖, 𝑓𝑐𝑝

(𝑡)represents the control force of

the isolator and 𝑓𝑝(𝑡) is the disturbance force, which is applied to the support system. The general 

control system is represented by 𝐶(𝑠), where 𝑠 represents the Laplace variable, 𝑎𝑖 represents the 
accelerometers situated on system 𝑖, which are used to measure the accelerations outputs of the 
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system, (𝑥̈𝑝(𝑡), 𝑥̈𝑏(𝑡)). The dynamic of the accelerometers is not considered in this work, since their 

dynamics are totally out to the frequency band of interest.  The problem has two inputs: 1) the 
perturbation force 𝑓𝑝(𝑡) and the control force 𝑓𝑐𝑝

(𝑡). The first one is supposed to be unknown, while

the second one tries to mitigate the effects of the perturbation force in the system, using the measured 
outputs. Note that the objective of the control force 𝑓𝑐𝑝

(𝑡) is to reduce the acceleration between the

platform and the support system. Thus, the control force moves the mass 𝑚𝑝 to minimize the 

transmissibility function (𝑥̈𝑝(𝑡)/𝑥̈𝑏(𝑡)). The equations of motion of the system can be derived from 

the second Newton’s law. The differential equation of the platform, that relates the movement of the 
mass 𝑚𝑝, the control force 𝑓𝑐𝑝

(𝑡) and the movement of the support structure 𝑥𝑏(𝑡) is given by:

𝑓𝑐𝑝
(𝑡) − 𝑐𝑝 (𝑥̇𝑝(𝑡) − 𝑥̇𝑏(𝑡)) − 𝑘𝑝 (𝑥𝑝(𝑡) − 𝑥𝑏(𝑡)) = 𝑚𝑝 𝑥̈𝑝(𝑡). (1) 

The differential equation of the support system is: 

𝑓𝑝(𝑡) − 𝑓𝑐𝑝
(𝑡) + 𝑐𝑝 (𝑥̇𝑝(𝑡) − 𝑥̇𝑏(𝑡)) + 𝑘𝑝 (𝑥𝑝(𝑡) − 𝑥𝑏(𝑡)) − 𝑐𝑝𝑥̇𝑏(𝑡) − 𝑘𝑏𝑥𝑏(𝑡) = 𝑚𝑏  𝑥̈𝑏(𝑡). (2)

The analysis of the isolation performance will be made in frequency domain. The Laplace transform of 
Eq. (1) gives: 

𝑠2𝑋𝑝(𝑠) = 𝑠2 (
𝐹𝑐𝑝

(𝑠)

𝑚𝑝𝑠2 + 𝑐𝑝𝑠 + 𝑘𝑝
+

𝑐𝑝𝑠 + 𝑚𝑝

𝑚𝑝𝑠2 + 𝑐𝑝𝑠 + 𝑘𝑝
𝑋𝑏(𝑠)) 

(3) 

= 𝐺𝑝(𝑠)𝐹𝑐𝑝
(𝑠) + 𝑇𝑝𝑏(𝑠)𝑠2𝑋𝑏(𝑠).

in which: 

 𝐺𝑝(𝑠) =
𝑠2𝑋𝑝(𝑠)

𝐹𝑐𝑝
(𝑠)

=  
𝑠2

𝑚𝑝𝑠2 + 𝑐𝑝𝑠 + 𝑘𝑝
and 𝑇𝑝𝑏(𝑠) =

𝑋𝑝(𝑠)

𝑋𝑏(𝑠)
=

𝑐𝑝𝑠 + 𝑚𝑝

𝑚𝑝𝑠2 + 𝑐𝑝𝑠 + 𝑘𝑝
. 

The transfer function 𝐺𝑝(𝑠) represents the relation between the acceleration 𝑥̈𝑝(𝑡) of the platform 

and the applied control force 𝑓𝑐𝑝
(𝑡). No external disturbance force applied on the platform has been

considered here. The term 𝑇𝑝𝑏(𝑠) is the transmissibility between the platform and the support 

structure. The force that the isolator imparts in the platform mass 𝑚𝑝 can be derived from Eq. (3): 

𝐺𝑝𝑓
(𝑠) =

𝑚𝑝𝑠2

𝑚𝑝𝑠2 + 𝑐𝑝𝑠 + 𝑘𝑝
. (4) 

The Laplace transform of Eq. (2) gives: 

𝑠2𝑋𝑏(𝑠) = 𝑠2 (
𝐹𝑝(𝑠) − 𝐹𝑐𝑝

(𝑠)

𝑚𝑏𝑠2 + (𝑐𝑝 + 𝑐𝑏)𝑠 + 𝑘𝑝 + 𝑘𝑏
+

𝑐𝑝𝑠 + 𝑚𝑝

𝑚𝑏𝑠2 + (𝑐𝑝 + 𝑐𝑏)𝑠 + 𝑘𝑝 + 𝑘𝑏
𝑋𝑝(𝑠))

= 𝐺𝑏(𝑠) (𝐹𝑝(𝑠) − 𝐹𝑐𝑝
(𝑠)) + 𝑇𝑏𝑝(𝑠)𝑠2𝑋𝑝(𝑠).

(5) 

in which 
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𝐺𝑏(𝑠) =
𝑠2

𝑚𝑏𝑠2 + (𝑐𝑝 + 𝑐𝑏)𝑠 + 𝑘𝑝 + 𝑘𝑏
and 𝑇𝑏𝑝(𝑠) =

𝑐𝑝𝑠 + 𝑚𝑝

𝑚𝑏𝑠2 + (𝑐𝑝 + 𝑐𝑏)𝑠 + 𝑘𝑝 + 𝑘𝑏
. 

The relation between the acceleration of the support structure 𝑥̈𝑏(𝑡) and the total force received by 
the support system (see Fig. 3) is given by 𝐺𝑏(𝑠). Whereas, 𝑇𝑏𝑝(𝑠) is the transmissibility between the 

support structure and the platform. These two terms are usually neglected (𝐺𝑏(𝑠) and 𝑇𝑝𝑏(𝑠)) in 

vibration isolation problems, since the isolator does not usually affect significantly the movement of 
the support system. Thus, these two terms have been considered with this framework. The transmitted 
force to the platform due the movement of the support structure is expressed as: 

𝑓𝑡(𝑡) = 𝑐𝑝 (𝑥̇𝑝(𝑡) − 𝑥̇𝑏(𝑡)) + 𝑘𝑝 (𝑥𝑝(𝑡) − 𝑥𝑏(𝑡)) = 𝑚𝑝𝑥̈𝑝(𝑡). (6) 

Considering Eq. (1) and Eq. (6), the Laplace transform of the transmitted force 𝑓𝑡(𝑡) to the platform 
from the platform movement is given by: 

𝐹𝑡(𝑠) = 𝑚𝑝𝑇𝑝𝑏(𝑠)𝑠2𝑋𝑏(𝑠) = 𝐻(𝑠)𝑠2𝑋𝑏(𝑠) =  𝑚𝑝𝑠2𝑋𝑝(𝑠). (7) 

where 𝐻(𝑠) = 𝑚𝑝𝑇𝑝𝑏(𝑠). Thus, the control scheme can be: 

Figure 3. Control scheme. 

Then, the closed – loop transfer function between the acceleration of the platform and the 
perturbation force can be derived as: 

𝐺𝐶𝐿(𝑠) =
𝑠2𝑋𝑝(𝑠)

𝐹𝑝(𝑠)
=

−𝐺𝑏(𝑠)𝐻(𝑠)

𝑚𝑝 (1 +
𝐶(𝑠)𝐺𝑝𝑓

(𝑠)

𝑚𝑝
− −𝐺𝑏(𝑠)𝐻(𝑠))

. 
(8) 

In this work, only vibration isolation respect to the support system is considered. It means that the 
platform does not need to keep a position respect a fixed global frame. For that purpose, instead of 
Eq. (8), the transmissibility between the acceleration in the support system and the platform is 
considered to analyze performance of the isolator. Based on the schematic of Fig. 3, the transmissibility 
can be expressed as: 

𝑇𝑋𝑋(𝑠) =
𝑋𝑝(𝑠)

𝑋𝑏(𝑠)
=

−𝐻(𝑠)

𝑚𝑝 (1 + 𝐺𝑝𝑓
(𝑠)𝐶(𝑠)/𝑚𝑝)

. (9)
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Therefore, the controller 𝐶(𝑠) must achieve the two following objectives: 1) a reduction of the 
response at the resonance frequency of the isolator, 2) a reduction in the cut-off frequency to improve 
the response for frequencies lower than the natural frequency of the isolator.  The first objective can 
be achieved by a damping increment.  The second objective can be achieved if the corner frequency 
of the transmissibility curve is moved to the left, which is equivalent to actively reduce the system 
frequency. If the measured output is the platform acceleration, the general expression to achieve both 
objectives is given by: 

𝐶(𝑠) = 𝐶𝑠 + 𝐶𝑑(𝑠) = −𝑘𝑠 −
𝑘𝑑

𝑠
. (10) 

in which 𝑘𝑑  represents the gain of the integral part, which imparts damping to the system, and where 
𝑘𝑠 is the gain of the controller part proportional to the acceleration output.  

3. EXAMPLE OF APPLICATION

In this section, the above developed theory is complemented with a numerical example of application. 

It allows to study the performance of the different proposed controllers that will be implemented in the 

active isolator, also it grants the possibility to understand the interaction phenomenon and to analyze 

stability problems before the experimental implementation. This motivates the study of the numerical 

model based on a real experiment.  

Figure 4. General view of the AVI experimental test. 

A general view of the experimental test is shown in Fig. 4. This setup allows to introduce to the system 

a controlled excitation in order to derive experimentally the different transfer functions expressed in 

Section 2 and validate the proposed framework. An active isolator is situated on the center of a simply 

– supported beam. The expression of Eq. (9) is used to assess the isolator performance, since it

represents the ratio between the acceleration of the platform (measured at the top of the isolator) and

the beam. Both accelerometers are vertically aligned.
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Figure 5. Experimental implementation: active isolator, beam support, accelerometers and the 
electrodynamic actuator used to generate the perturbation force. 

If an electrodynamic shaker is situated below the support system and it is connected to the beam with 

a steel rod, see Fig. 5, then the dynamic model of the system is like that shown in Fig. 2: an isolator is 

mounted on a beam, that acts as support system, and it is perturbed by a force which is imparted by a 

shaker. 

Table 1. Dynamic parameters of the system. 

Property 
Value 

Active isolator Support structure 

Mass 3 kg 127 kg 

Damping 2 Nsm-1  12 Nsm-1 

Stiffness 330 N/m 113664 N/m  

Frequency 10.48 rad/s 29.91 rad/s 

The used values for this numerical example, based on the above shown configurations, are shown in 

Table 1. The frequency of both systems is calculated using the expression 𝜔𝑛𝑖
= √𝑘𝑖

𝑚𝑖
⁄ , [17]. One of

the main aims of the control system is to reduce the response at the isolator natural frequency. For that 

purpose, the integral part of Eq. (10) should be used, which corresponds with (𝑘𝑑/𝑠).  
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Figure 6. Transmissibility for different values of 𝑘𝑑 . 

As the absolute value of the gain 𝑘𝑑  increases, the ratio (𝑥𝑝(𝑡)/𝑥𝑏(𝑡)) is reduced. However in a 

traditional damper, the exerted control force is proportional to the relative velocity between the 

platform (𝑥̇𝑝(𝑡) − 𝑥̇𝑏(𝑡)) , in this case the applied control force 𝑓𝑐𝑝
(𝑡) is proportional to the velocity

of the platform 𝑥̇𝑝(𝑡). This control law is called sky – hook  damper [9], [17].  

The Fig. 6 shows that in passive mode (𝑘𝑑 = 0), isolation occurs for frequency values greater than 

√2𝜔𝑛 , as mentioned above. However, if the active damping increases, isolation can be reached for 𝜔 <

𝜔𝑛𝑝
.

Figure 7. Transmissibility for different values of 𝑘𝑑 and 𝑘𝑠. 
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It is important to consider that, in a real experiment, there is an upper limit for the gain 𝑘𝑑 , due to the 

limitations of the involved devices. Whereby, to improve the performance of the isolator, an actively 

reduction of its natural frequency and an addition of damping can be reached using both terms of Eq. 

(10). The result is shown in Fig. 7. The corner frequency is reduced as the absolute value of the gain 𝑘𝑠 

increases, and the peak value becomes more flatter as 𝑘𝑑  is increased.   

4. CONCLUSIONS

Active vibration isolation systems present many advantages compared with PVI systems. The use of 

feedback systems allows to raise different control schemes according to the requirements of each 

problem. The necessity of keeping a precise alignment between different devices, when they are 

affected by vibration from several sources, leads to study all the possible scenarios. In this work, a single 

– axis isolator placed on a simply – supported beam, considering the interaction between them, has

been analysed. The main difference respect to a simultaneous positioning and vibration isolation

problem has been identified. Also, a generic controller has been proposed, which improves the

response of the isolator respect to the support system by increasing the damping and by reducing the

natural frequency of the system (i.e., reducing the cut-off frequency of the transmissibility function).

Future work will be related with the analysis of different scenarios, in which several isolators and 

different control algorithms will be involved, with the main purpose of keeping the relative position of 

them. With these objectives, several experimental works will be developed.  

ACKNOWLEDGEMENTS 

The authors acknowledge the financial support provided by the UK Engineering and Physical Sciences 

Research Council (EPSRC) and Spanish Ministry of Science, Innovation and Universities (Research project 

SEED-SD, RTI2018-099639-B-I00).  

REFERENCES 

[1] R. P. Walker, “Overview of the Status of the Diamond Project,” presented at the European
Particle Accelerator Conference (EPAC), Edinburgh, Scotland, 2006, p. 5.

[2] A. Preumont et al., “A six-axis single-stage active vibration isolator based on Stewart platform,”
J. Sound Vib., vol. 300, no. 3–5, pp. 644–661, Mar. 2007.

[3] X. Yang, H. Wu, B. Chen, S. Kang, and S. Cheng, “Dynamic modeling and decoupled control of a
flexible Stewart platform for vibration isolation,” J. Sound Vib., vol. 439, pp. 398–412, Jan. 2019.

[4] C. Wang, X. Xie, Y. Chen, and Z. Zhang, “Investigation on active vibration isolation of a Stewart
platform with piezoelectric actuators,” J. Sound Vib., vol. 383, pp. 1–19, Nov. 2016.

[5] M. Li, Y. Zhang, Y. Wang, Q. Hu, and R. Qi, “The pointing and vibration isolation integrated control
method for optical payload,” J. Sound Vib., vol. 438, pp. 441–456, Jan. 2019.

[6] C. Collette, S. Janssens, K. Artoos, and C. Hauviller, “Active vibration isolation of high precision
machines,” Diam. Light Source Proc., vol. 1, no. MEDSI-6, Apr. 2011.

[7] F. Matichard et al., “Advanced LIGO two-stage twelve-axis vibration isolation and positioning
platform. Part 2: Experimental investigation and tests results,” Precis. Eng., vol. 40, pp. 287–297,
Apr. 2015.

653



Study of active vibration isolation systems considering isolator – structure interaction 
Fifth International Conference on Mechanical Models in Structural Engineering 
Alicante (Spain). 23 – 25 Oct 2019. 

[8] F. Matichard et al., “Advanced LIGO two-stage twelve-axis vibration isolation and positioning
platform. Part 1: Design and production overview,” Precis. Eng., vol. 40, pp. 273–286, Apr. 2015.

[9] A. Preumont, Vibration control of active structures. New York, NY: Springer Berlin Heidelberg,
2018.

[10] D. L. Platus, “Negative-stiffness-mechanism vibration isolation systems,” presented at the San
Jose - DL tentative, San Jose, CA, 1992, pp. 44–54.

[11] E. Palomares, A. J. Nieto, A. L. Morales, J. M. Chicharro, and P. Pintado, “Numerical and
experimental analysis of a vibration isolator equipped with a negative stiffness system,” J. Sound
Vib., vol. 414, pp. 31–42, Feb. 2018.

[12] J. E. Ruzicka, “Active Vibration and Shock Isolation,” presented at the National Aeronautic and
Space Engineering and Manufacturing Meeting, 1968.

[13] I. M. Díaz and P. Reynolds, “Robust saturated control of human-induced floor vibrations via a
proof-mass actuator,” Smart Mater. Struct., vol. 18, no. 12, p. 125024, Dec. 2009.

[14] I. M. Díaz and P. Reynolds, “Acceleration feedback control of human-induced floor vibrations,”
Eng. Struct., vol. 32, no. 1, pp. 163–173, Jan. 2010.

[15] I. M. Díaz, E. Pereira, M. J. Hudson, and P. Reynolds, “Enhancing active vibration control of
pedestrian structures using inertial actuators with local feedback control,” Eng. Struct., vol. 41,
pp. 157–166, Aug. 2012.

[16] E. Pereira, I. M. Díaz, E. J. Hudson, and P. Reynolds, “Optimal control-based methodology for
active vibration control of pedestrian structures,” Eng. Struct., vol. 80, pp. 153–162, Dec. 2014.

[17] D. Karnopp, M. J. Crosby, and R. A. Harwood, “Vibration Control Using Semi-Active Force
Generators,” J. Eng. Ind., vol. 96, no. 2, p. 619, 1974.

654


	Introducción
	00_Proceedings

	Introducción
	STUDY OF ACTIVE VIBRATION ISOLATION SYSTEMS CONSIDERING ISOLATOR-STRUCTURE INTERACTION


