Difference-based analysis of the impact of observed game parameters on the final score at the FIBA EuroBasket Women 2019

SLOBODAN SIMOVIĆ1, JASMIN KOMIĆ2, BOJAN GUZINA1, ZORAN PAJIĆ3, TAMARA KARALIĆ1, GORAN PAŠIĆ1

1Faculty of Physical Education and Sport, University of Banja Luka, Bosnia and Herzegovina
2Faculty of Economy, University of Banja Luka, Bosnia and Herzegovina
3Faculty of Physical Education and Sport, University of Belgrade, Serbia

ABSTRACT

Evaluation in women’s basketball is keeping up with developments in evaluation in men’s basketball, and although the number of studies in women’s basketball has seen a positive trend in the past decade, it is still at a low level. This paper observed 38 games and sixteen variables of standard efficiency during the FIBA EuroBasket Women 2019. Two regression models were obtained, a set of relative percentage and relative rating variables, which are used in the NBA league, where the dependent variable was the number of points scored. The obtained results show that in the first model, the difference between winning and losing teams was made by three variables: true shooting percentage, turnover percentage of inefficiency and efficiency percentage of defensive rebounds, which explain 97.3%, while for the second model, the distinguishing variables was offensive efficiency, explaining for 96.1% of the observed phenomenon. There is a continuity of the obtained results with the previous championship, played in 2017. Of all the technical elements of basketball, it is still the shots made, assists and defensive rebounds that have the most significant impact on the final score in European women’s basketball. It can be noted that, unlike with the previous championship, inside play is no longer dominant, but there is a balance between inside and outside play, which has already been established as a developing trend in men’s basketball. The emergence of the offensive efficiency variable indicates that it is becoming significant in top-tier competitions as well but is still a challenge for coaches to grasp the causes of this multicomplex issue based on this indicator. Keywords: Defensive rebound; Field goals made; Offensive efficiency; Regression models; Turn overs; Women’s basketball.

Cite this article as:

Corresponding author. Faculty of Physical Education and Sport, University of Banja Luka, Bulevar Vojvode Petra Bojovića 1A, 78000 Banja Luka, Bosnia and Herzegovina.
E-mail: slobodan.simovic@ffvs.unibl.org
Submitted for publication December 24, 2019
Accepted for publication February 7, 2020
Published in press March 3, 2020
JOURNAL OF HUMAN SPORT & EXERCISE ISSN 1988-5202
© Faculty of Education, University of Alicante
INTRODUCTION

Basketball is, in the scope of scientific research, one of the most analysed sports (Mikołajec et al., 2013) because after each game a box score is made available, which “provides for each player and each team, quantitative information on 15 variables” (Celeux and Robert, 2015, p. 51). In the words of Víctor Blanco, Román Salmerón and Samuel Gómez-Haro: “One of the main differences between basketball teams and other sports comes from the availability of information” (2018, p. 2). For that reason, it is important to revisit them to expand our knowledge on the situational conditions that affect performance (Gómez et al., 2013). Despite that, it is a fact that scientific literature on women’s basketball is still limited (Conte et al., 2015; Kreivyte et al., 2013; Milanović et al., 2016), although “women’s basketball analysis through game-related statistics would seem to be an important area of research” (Gómez et al., 2009, p. 278), even though the evolution of women’s basketball has not been falling behind men’s basketball. This is corroborated by the fact that a mere 15 months after the first experimental basketball match was played between two classes at Springfield YMCA (21 December 1891), Senda Berenson Abbott organized the first ever match between women’s teams in this sport at Smith College, Northampton, Massachusetts, on 22 March 1893 (Simović and Pavlović, 2013). It must be said, though, that in the past decade the trend has been shifting and numerous papers have been published on this topic (Bazanov and Rannama, 2015; Conte and Lukonaitiene, 2018; Dimitros et al., 2013; Fylaktakidou et al., 2011, 2013; Gómez et al., 2013; Koon et al., 2011; Kreivyte et al., 2013; Leicht et al. 2017; Madarame 2018a, 2018b, 2018c, 2018d; Milanović et al., 2016; Moreno et al. 2013; Şentuna et al., 2018; Simović et al., 2017; Veleirinho and Tavares, 2013).

The performance indicators have often been the subject of research in basketball (Kioumourtzoglou et al., 1998). Two most common approaches in the scientific study of performance in basketball are biomechanical and notational analysis (Gréhaigne et al., 1997; Hughes and Bartlett, 2002). In notational analysis, which carries a long tradition in basketball, going back to 1930s and early 1940s, when a series of papers were published, including women’s basketball as well (Messersmith et al., 1940; Miner et al., 1940), using game-related data, technique and tactical skills, providing information on the technical, tactical, physiological and psychological demands of basketball (Huges and Franks, 2004). Today, notational analysis is deemed to be an objective method of quantifying key elements of performance in a valid and consistent way (Nevill et al., 2008).

Performance analysis focuses on players and game evaluation in an attempt to get better insight into the aspects that allow for the optimization of player and team resources, but also to identify competition demands (Barris and Button, 2008), its main purpose being to provide useful information to adapt the training process (Ribas et al., 2011), because “contest performance indicators analysis of the best European basketball teams provides a lot of objective information about the game of basketball, its development and the achieved results” (Kreivyte et al., 2013, p. 46).

A study by Anna Volossovitch classifies research topics for notational analysis into the following areas: shooting performance analysis, individual and team performance analyses using game-related statistics, scoring dynamics, dynamic analysis of space-time coordination and interactions between players and teams and competitive activity profiles and specific position demands (Volossovitch, 2017). In statistical research, discriminant analysis is often used to identify the game-related statistics which discriminate between winning and losing teams in a league or tournament (Sampaio et al., 2013).
The aim of this paper is to ascertain if the difference in points scored between the winning and losing teams is a function of the differences in quantitatively observed relative indicators of situational analysis in basketball during the last continental championships – the FIBA EuroBasket Women 2019.

METHODS

The sample of entities in this paper consisted of games \((n = 38)\) played during the FIBA EuroBasket Women 2019. The championship was played from June 27 to July 7 in Latvia and Serbia in four cities: Belgrade, Riga, Zrenjanin and Niš. The championship included 16 national teams that qualified for the final tournament: Belgium, Belarus, Montenegro, the Czech Republic, France, Italy, Latvia, Hungary, Russia, Slovenia, Serbia, Spain, Sweden, Turkey, Ukraine and Great Britain.

For the purposes of this paper, two models were formed with absolute values obtained based on the 13 manifest variables gathered during matches in a manner prescribed by rules of the International Basketball Federation, provided at the official IBF website, http://www.archive.fiba: PST – total points, A2 – 2 points attempted, M2 – 2 points made, A3 – 3 points attempted, M3 – 3 points made, AFG – field goals attempted, MFG – field goals made, AFT – free throws attempted, MFT – free throws made, OR – offensive rebounds, DR – defensive rebounds, TOTR – total rebounds, AS – assists, PF – personal fouls, TO – turnovers, ST – steals, and BS – blocked shots.

Various formulas were used in scientific literature to calculate relative variables of the standardly observed parameters of the game of basketball, and this paper used absolute variables which are used in the NBA league: 2% – percentage two points \((M2/A2)*100\), 3% – percentage three points \((M3/A3)*100\), FG% – percentage field goals \((MFG/AFG)*100\), FT% – percentage free throws \((MFT/AFT)*100\), eFG% – effective field goal percentage \([FGM + (0.5 \times 3PTM) / FGA]*100\), TS% – true shooting percentage \([2 \times (FG + 0.475 \times FTA)]*100\), OR% – efficiency percentage of offensive rebounds \([ORB / (ORB + DRBopp)]*100\), DR% – efficiency percentage of defensive rebounds \([DRB / (ORBopp + DRB)]*100\), AS% – percentage of assist efficiency \((AS/FGM)*100\), TO% – turnover percentage of inefficiency \([TOV / (FGA + 4.40 \times FTA + TOV)]*100\), BS% – block percentage of efficiency \((BS/FGA)*100\), Off\(_{eff}\) – offensive efficiency \((PTS/Poss)*100\), Def\(_{eff}\) – defensive efficiency \((PTSopp/Poss)*100\), Off\(_{rg}\) – offensive rating \([\text{Ptmposs + Oppposs} * \text{Pst}]/100\), Def\(_{rg}\) – defensive rating \([\text{Tmposs + Oppposs} * \text{Oppposs}]/100\), AS\(_{rg}\) – assist ratio \(A / [\text{FGA} + (\text{FTA} * 0.44) + (\text{AS}) + (\text{TO})]\), AS/TO\(_{rg}\) – AS/TO, FT\(_{rg}\) – free throw rating \(\text{FT} / \text{FGA}\), PPP – point per possession \(\text{PTS} / \text{Poss}\), USG% – usage percentage \((\text{TGA} + \text{TO} + 0.44 \times \text{FTA}) / \text{Poss}\), and Poss – possession \(\text{FGA} + 0.475(\text{or 0.44}) \times \text{FTA} – \text{ORB} + \text{TO}\).

The winner of the game is the team with the most points scored. The difference in points scored between the winning and losing team is labelled as ΔPTS and is observed as the result of all individual differences of the observed parameters. The formation of the quantitative model for the assessment of the impact of individual observed game parameters on the final score is based on creating a multiple linear regression model where ΔPTS is a subordinate variable, while the differences \(\Delta\) of the other observed game parameters are insubordinate variables. For the purposes of this paper, two regression models were formed, with the same subordinate variable, ΔPTS. The first model was designed to represent a set of insubordinate variables comprising the differences of all relative percentage parameters of the standardly observed game parameters:

\[\DeltaPTS = f(\Delta2\%, \Delta3\%, \DeltaFG\%, \DeltaeFG, \DeltaFT\%, \DeltaOR\%, \DeltaDR\%, \DeltaAS\%, \DeltaTO\%, \DeltaBS\%, \DeltaTS\%) \]
\[y_i = \beta_0 + \sum_{j=1}^{11} \beta_j x_{ji} + \varepsilon_i \]

where the variable labels are: \(x_{1i} = \Delta 2\% \), \(x_{2i} = \Delta 3\% \), \(x_{3i} = \Delta FG\% \), \(x_{4i} = \Delta eFG\% \), \(x_{5i} = \Delta FT\% \), \(x_{6i} = \Delta OR\% \), \(x_{7i} = \Delta DR\% \), \(x_{8i} = \Delta AS\% \), \(x_{9i} = \Delta TO\% \), \(x_{10i} = \Delta BS\% \), and \(x_{11i} = \Delta TS\% \).

The second model was designed to include all insubordinate variables of the relative rating parameters of the game:

\[\Delta PTS = f(\Delta OFF_{eff}, \Delta DEF_{eff}, \Delta OFF_{rtg}, \Delta DEF_{rtg}, \Delta AS_{rtg}, \Delta AS/TO_{rtg}, \Delta FT_{rtg}, \Delta PPP, \Delta USG\%) \]

\[y_i = \beta_0 + \sum_{j=1}^{8} \beta_j x_{ji} + \varepsilon_i \]

where the variable labels are: \(x_{1i} = \Delta OFF_{eff} \), \(x_{2i} = \Delta DEF_{eff} \), \(x_{3i} = \Delta OFF_{rtg} \), \(x_{4i} = \Delta DEF_{rtg} \), \(x_{5i} = \Delta AS_{rtg} \), \(x_{6i} = \Delta AS/TO_{rtg} \), \(x_{7i} = \Delta FT_{rtg} \), \(x_{8i} = \Delta PPP \), and \(x_{9i} = \Delta USG\% \).

Mutual relations among the established variables were studied by means of regression and correlation analysis of the designed regression models using gradual regression (stepwise), which defined the conditions for gradual regression for inclusion and exclusion of variables in the model – in particular, criterion F for the inclusion of variables into the equation is of .05 significance, and .10 for exclusion (standard values). Standardization at this level ensured consistency and comparability of results at different levels and in different time periods. Also, the determined variables and their parameters were examined in terms of the level of significance they exhibited (t-test and F test), all with an aim to obtain well-defined models providing ground for valid extrapolation.

RESULTS

Table 1 shows the results of the regression and correlation analysis of the first model and the second model for the standardly observed parameters of the game of basketball.

Table 1. Regression and correlation analysis of the first model and second model at the FIBA EuroBasket Women 2019.

<table>
<thead>
<tr>
<th></th>
<th>1st MODEL</th>
<th>2nd MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SE</td>
<td>t</td>
</tr>
<tr>
<td>Constant</td>
<td>.420</td>
<td>.255</td>
</tr>
<tr>
<td>(\Delta TS%)</td>
<td>.042</td>
<td>28.560</td>
</tr>
<tr>
<td>(\Delta TO%)</td>
<td>.047</td>
<td>-22.451</td>
</tr>
<tr>
<td>(\Delta DR%)</td>
<td>.024</td>
<td>12.156</td>
</tr>
</tbody>
</table>

From the obtained regression models and based on the partial correlation coefficient, it can be concluded that the final score of games at the FIBA EuroBasket Women 2019, in the first model, was influenced the most by variables \(\Delta TS\% \) – true shooting percentage (\(\beta = .824 \), \(p < .000 \)) with partial correlation \(r_p = .980 \),
ΔTO% – turnover percentage of inefficiency ($\beta = -0.644$, $p < .000$) with partial correlation $r_p = -0.968$, and ΔDR% – efficiency percentage of defensive rebounds ($\beta = 0.346$, $p < .000$) with partial correlation $r_p = 0.902$.

Variables with the greatest impact on the final score in the second model were: ΔOFF$_{eff}$ – offensive efficiency ($\beta = 0.507$, $p < .000$) with partial correlation $r_p = 0.912$, and ΔDEF$_{eff}$ – defensive efficiency ($\beta = -0.506$, $p < .000$) with partial correlation $r_p = -0.911$.

Partial correlation values (r_p) are particularly noteworthy, as they express the significance of the influence that certain selected variables have on the final score of the game. At the same time, the influence of the other variables is deemed to be unaffected. As we can see, for the variables obtained in this paper the influence is deemed to be very high.

Based on the obtained results, which are shown in Table 2, it can be concluded that regression models are statistically significant in relation to the included variables. Both models show significant correlation between subordinate variable (ΔPTS) and the set of insubordinate variables included in the model.

<table>
<thead>
<tr>
<th></th>
<th>1st MODEL</th>
<th>2nd MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regression</td>
<td>Regression</td>
</tr>
<tr>
<td></td>
<td>2,687.033</td>
<td>2,742.738</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>895.678</td>
<td>1,371.369</td>
</tr>
<tr>
<td></td>
<td>411.855</td>
<td>2,137.104</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>Residual</td>
</tr>
<tr>
<td></td>
<td>73.941</td>
<td>18.236</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.175</td>
<td>.521</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>2,760.974</td>
<td>2,760.974</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>37</td>
</tr>
</tbody>
</table>

All of the above leads to the conclusion that in all models, according to the Chaddock scale, there is a firm correlation between the subordinate variable PTS, i.e. ΔPTS, and the relevant sets of insubordinate variables.

Figure 1 gives a graphic representation of the variables included in the first model of the individual iteration, i.e. values of adjusted R square in each iteration. The values of adjusted R square up to the final iteration
step are: (1st) $R^2 = .422, F(1, 36) = 26.265, p < .000$; (2nd) $R^2 = .857, F(2, 35) = 104.729, p < .000$; and (3rd) $R^2 = .973, F(3, 34) = 411.855, p < .000$. When it comes to variables included in the second model, the iterations are: (1st) $R^2 = .961, F(1, 36) = 887.350, p < .000$, and (2nd) $R^2 = .993, F(2, 35) = 2632.104, p < .000$.

DISCUSSION

It is possible to form numerous regression models. The basic question is why a model was not formed based on absolute variables, which was used in previous studies using this method (Simović et al., 2008; Simović et al., 2012; Simović et al., 2018; Simović et al., 2019)? Statistical analysis of the model with absolute variables isolated two variables with a significant impact on the outcome of a game (ΔPTS). They are ΔMFG and ΔMFT, which explain for 89.1% of the phenomenon ($R^2 = .891, F(2, 35) = 142.698, p < .000$) with very high ΔMFG ($r_p = .942$) and medium high partial correlation ΔMFT ($r_p = .791$). The ΔMFG variable, isolated in the first iteration, explains 70.0% of the phenomenon ($R^2 = .700, F(1, 36) = 87.166, p < .000$). Analysis of the FIBA EuroBasket Women 2017 yielded identical results [24], where the same variables were isolated (ΔMFG and ΔMFT) in matches of the final two rounds of the competition. For the entire championship, aside from these two variables, ΔM2 emerges as significant as well. For this reason, we felt that it was not necessary to show the data in the results, but rather that it would be sufficient to comment on them in the discussion.

In any case, the impact of field goals on the final score of basketball games is undeniable. Field goals are the most studied basketball performance parameter which contributes to victory and is directly related to success (Hofler and Payne, 1997). It is clear that the team with the higher field goal percentage (FG%) has a greater chance to win the match, and if you have the same or even lower FG% than the opponent, you can only win the match if you have more field goals attempted (FGA) or if you have more free throws attempted (FTA) or a better free throw percentage (FT%). To secure a victory, you need to be better in three out of these four items. Although the other basketball skills that we call fundamental (passing, dribbling, defence and rebounding) may provide a high shot percentage for a player, he or she still has to be able to score. On that note, Dean Oliver identified four key factors required to win a match, two of which are related to field goals: shot efficiency and number of free throws, the other two being offensive rebounds and turnovers (Oliver, 2004). Studies conducted so far for top-tier women’s basketball confirmed the significance of field goals, especially short-range and mid-range shot efficiency, which make up the majority of shots (Kreivytė and Čižauskas, 2007, 2010), although the frequency of these shots is decreasing (albeit without a change in shot efficiency), with rising numbers long-range shots (Kreivyte et al., 2011). This indicates that coaches are more than aware of the significance of shooting skills and that there is significant room for their improvement through training. A study by Daniele Conte and Inga Lukonaitiene, conducted at the FIBA EuroBasket Women 2017, showed that winning teams, compared to losing teams in a game, score more points in the paint, points from turnovers and second chance points after a successful offensive rebound (2018). This further corroborates the age-old observation that the main difference between men’s and women’s teams is that female players prefer shooting from good positions inside the paint instead of near the 3-point line as occurs in men’s games (Mavridis et al., 2003).

Basketball experts have long noticed that the sheer sum of gathered indicators is not in itself sufficient for a detailed analysis of all events taking place during a game (Simović et al., 2012). One of the first to deal with this issue was Dean Smith, who noted that the number of rebounds itself is not a reliable indicator, but instead that it is the efficiency of such rebounding (1999). All of this lead to the practice of not using relative statistical indicators as is, but trying to mathematically model different formulas which should aid in making conclusions on game performance (Aizemberg et al., 2014; Csataljay et al., 2012; Kubatko et al., 2007; Mikolajec et al.,...
2013). Jose Martinez may have best described the current situation in the field when he said that “To find best measure to valuate a basketball player is becoming like the search of the 'Holy Grail'” (2012, p. 21). The problem researchers are facing, and which was pointed out as early as 1995 by Jean-Francis Gréhaigne and Paul Godbout, is in the non-linearity of relations between efficiency and multidimensionality and unpredictability of player behaviour in specific, ever-changing game conditions. This is why some authors point out that it is no wonder that there are constant efforts to come up with new criteria systems (Trninić et al., 2000). This problem was perhaps best described by the great coach Pat Riley, who said he was certain not all skills can be measured mechanically, but it is certain that they were all measurable in one way or another and that the events observed and noted during matches can be expressed in numbers (1993).

This is why two models were offered in this study. The first is based on percentages of the standardly observed game parameters, and the second on their relative rating. This is our first study in which we came to these variables-based experiences and research done in the NBA league.

An analysis of the first model shows that the first iteration again yielded a field goal variable - true shooting percentage (ΔTS%) which explains 42.2% of the observed phenomenon. This supports the results obtained through analysis of relative indicators mentioned at the beginning of the discussion, and also a fact pointed out by Rasa Kreivyte et al., that: “The team game and its changes can be evaluated by analysing quantitative (shooting from different distances, free throws, rebounds, etc.) and qualitative (shooting efficiency, diversity, etc.) indicators” (2013, p. 47). True shooting percentage is an APBRmetrics statistic (Association for Professional Basketball Research Metrics), the purpose of which is to give a more precise calculation of shot efficiency for both the individual players and the team. If we analyse the formula, we can see that it takes two variables which are recorded during matches: field goals attempted (AFG) and free throws attempted (AFT). Analysis of the relative model for the previous FIBA EuroBasket Women 2017 determined that it was ΔMFG and ΔMFT that had an influence on ΔPTS (Simović et al., 2017), which indicates that we now merely have a more precise estimate of efficiency, and that variables with an influence on the final score have remained the same, even though they are the number of shots attempted and shots made. This study has previously explained how these parameters can bring a victory. In any case, other researchers have also reached conclusions on the impact of field goal efficiency on the final score in women’s basketball (Gómez et al., 2006; Kreivyté and Čiausauskas, 2007, 2010; Leicht et al., 2017), as well as the efficiency of free throws (Gómez et al., 2006; Milanović et al., 2016; Nakić, 2004). At the same time, FG% or its variants are one of the most commonly used measurements in basketball when assessing offensive capability (Hickson and Waller, 2003; Piette et al., 2010), and, in all collective sports, shot precision is an indicator of the highest level of competence and a guarantee for achieving great results in sports (Milanović et al., 2016). Studies have shown that FG% is a key factor of team success for young female basketball players as well (Koh et al., 2012).

In addition to ΔTS%, in the first model, two more variables presented as significant for the final score at the most recent European Championship. They are turnover percentage of inefficiency (ΔTO%) and efficiency percentage of defensive rebounds (ΔDR%). ΔTS% and ΔTO% explain 85.7% of the observed phenomenon, and after ΔDR% joins them in the third iteration, they explain 97.3% of the phenomenon. Slavko Trninić pointed out that turnovers reduce the shot percentage of the team, and increase that of the opponent, resulting in dual failure (2006). In the analysis, loss of ball in possession, which provides opportunities for the opponent executing an offence (bad pass, bad catch, bad dribbling), should be separated from game rule violations (which result in turnovers). The former is essentially the result of quality aggressive defence and open the door to transitional offences, which have a high percentage of short-range shots. A study by Anastasia Fylaktakidou, Evangelos Tsamourtzis, and Georgios Zaggelidis showed that the frequency of TOs
in women’s basketball is higher than mention in literature and for men’s teams (2011). The study further notes that passing is the most common cause of TO (40.2%). This was interpreted in two ways. Firstly, through the offence control tactics which result in more passes, for which a long time ago Jay Mikes explained that with more passing before executing a shot, there is a higher risk of a TO (1980). Secondly, passing is the easiest way to get the ball across the court. At the same time, trying to increase passing precision increases the possibility of a TO. Hence, perfecting passing techniques reduces the number of TOs and increases offensive efficiency (Theocharopoulos et al., 2002), because a team that is capable of controlling the rhythm of the offence using efficient passes has a higher chance of getting into a shot position (Stavropoulos et al., 2001). Also, studies have shown that TOs are important because they bring more possessions to the team (Gómez et al., 2013; Sentuna et al., 2018). In short, it can be concluded that passing and receiving the ball are the basis of the collective dynamic of basketball and that passing is the second most important technical element in basketball, after shooting (Nunes et al., 2016; Oliver, 2004). Next after TOs due to mistakes in passing are ballhandling (23.9%) and travelling (23.6%) (Fylaktakidou et al., 2011). These variables (ΔTO%) had a significant impact on scores in basketball in the previous Women’s European Championship (Simović et al., 2018) which, aside from the impact of this variable on the final score, points to its consistency. In addition, it points to an evolution of play in women’s basketball, because previous studies showed that TO did not make a difference between winning and losing teams (Fylaktakidou et al., 2011).

The third variable that made a difference between winning and losing teams at this European Championship is ΔDR%. The importance of defensive rebounds in women’s basketball and its relation to winning teams was established in late last century (Graber, 1998; Sampaio, 1998). Later, the relation was identified in other studies on women’s basketball (Gómez et al., 2006; Leicht et al., 2017; Milanović et al., 2016; Nakić, 2004). Higher numbers of defensive rebounds indicate overall defensive and rebounding efficiency (Trninić, 1996), while having in mind that studies by Gabor Csataljay et al. confirmed that: “consequences rebounding percentages should be used both in offence and in defence instead of the number of rebounds“ (Csataljay et al., 2012, p. 363). Good defensive rebounding allows for faster transformation from defence into offence and for opening up a counterattack or semi-counterattack, resulting in scoring easy points (Sampaio and Janeira, 2003), but also in further acceleration of the pace of the game. It should be noted that some researchers determined that women’s teams that are dominant in rebounding and have won games have had taller players, especially in shooting guard and forward positions (Carter et al., 2005). The impact of DR on the final score was determined for U18 women’s teams at continental championships (Madarame, 2018c).

A study by Anthony Leicht et al. on Olympic women’s tournaments from 2004 to 2016 yielded results similar to that of this study, i.e. that the final score in games was affected by FGM, TO and DR (Leicht et al., 2017).

When it comes to the second mode, formed based on relative rating parameters, the second iteration isolated two variables pertaining to offensive and defensive efficiency. It can be noticed that the variable Off_{eff} isolated in the first iteration, explains 91.2% of the observed phenomenon ($R^2 = .912, F(1, 36) = 887.350, p < .000$), indicating a high statistical significance of offensive efficiency in this competition. This confirms the age-old observation by numerous basketball experts and theoreticians across the world that, although the game of basketball has two stages (offence and defence), the sum total of all offences with varying lengths, their characters and offensive efficiency prove to be key to the assess of content, markings and final score. Boris Bazanov and Indrej Rannama point out that: "The offense efficiency coefficient is considered to be one of the main indicators in basketball" (Bazanov and Rannama, 2015, p. 50), and Dean Oliver found that this is particularly pronounced in lower-tier competitions and junior competitions (2004). The evolution of the offence in basketball displays increasing dynamics (Bazanov, 2007; Zhang et al., 2010), which is a trend for women’s basketball as well (Bazanov and Rannama; 2015). An additional challenge rises here for coaches, to
understand the causes of these quantified results based on this index (Correia et al., 2013; Page et al., 2014), including the fact that “the preparations for a team to be successful in basketball court involve the use of very complex strategies” (Sentuna et al., 2018, p. 146). On the other hand, studies have shown that in modern basketball offensive efficiency depends primarily on the balance between outside games and post games (Courel-Ibáñez et al., 2017; Gomez et al., 2016; Mavridis et al., 2004), which is vital to the improvement of performance, training process planning and preparation for a match or competition (Lemmink and Frencken, 2013). In any case, the results of this study indicate that outside and post play are balancing out in European women’s basketball, because unlike the analysis of the previous continental championships in 2017, when M2 was isolated as a variable significant for victory in basketball, this time it was only the variable MFG, which includes both outside (M3) and post play (M2). Further, it can be seen that with the increase in game dynamics there is a decrease of dribblings, and passing as well, with an increased risk for passing, which may explain the emergence of ΔTO, which is in contradiction to the results of previous studies (Fylaktakidou et al., 2011; Mikes, 1987).

Regardless of its limitations, which primarily have to do with the fact that the data was gathered by someone else (Škegro, 2013) and that authors often do not carry out any analysis of variable reliability (Hughes et al., 2002), notational analysis is still a vital tool for coaches in collective sports, basketball in particular, to have valid and reliable data on their teams and opponents (Sampaio et al., 2010). The results of notational analysis, which define player and team performance using statistics, facilitate decision-making, primarily for the coach, as Kun-Tzu Yu, Zhong-Xin Su, and Rui-Chen Zhuang pointed out that the players’ technical and tactical skills require continuous and systematic logging and analysis, in order to monitor their evaluation with the aim to improve both individual and team training sessions (2008). When it comes to women's basketball, then it may be most fitting to quote Miguel Gómez at al., who say that: “... women’s basketball analysis through game-related statistics would seem to be an important area of research, because the teams’ and players’ performance differ as a function of the gender” (2009, p. 278).

CONCLUSION

The results of this study show that in the women’s EuroBasket 2019, the TS% variable, which comprises FGM and FTM, but also TO, DR and Offeff made the difference between winning and losing teams in matches at the FIBA EuroBasket Women 2019. Identical results, excluding the variable Offeff, which had not been researched up to that point, was isolated in the previous championship, in 2017, but also in studies on Olympic women's tournament, which indicates continuous influence of these variables. Among the isolated variables, the dominant ones are field goals, but no longer is women’s basketball play dominated by post play, as was the case in the previous championship, but now there is a balance between outside and post play. This is not much of a surprise since in all collective sports shot efficiency indicates high levels of a team’s preparedness and willingness to achieve good sport results. Aside from field goals, coaches of women’s teams should pay attention to passing technique, which is the main cause of turnovers. The increased offensive dynamics and comparable quality of teams in top-tier competitions have decreased dribbling, and also passing is reduced, but with an increased risk, which leads to more turnovers. In women’s basketball there is significant room for improvement of passing since TO is one of the variables that distinguish men’s from women’s teams the most. In addition, winning teams have a higher DR percentage compared to the number of shot opportunities, which primarily takes away the opponents’ ability to make more than one shot per possession, thus reducing their shot percentage. Technique and individual and group rebounding tactics in defence is prominent in women’s basketball if the team is inferior in height than the opponents. The variable of offensive efficiency indicates the importance of technical and tactical qualities of female players and their integration into the group and collective tactics and team concept. Studies have
shown that this index is especially prominent at lower-tier competitions and competition of junior teams, but now in women’s basketball as well. How to interpret this index is still a challenge for coaches and researchers because of the multicomplexity that occurs in the offense in basketball.

AUTHOR CONTRIBUTIONS

SUPPORTING AGENCIES

The authors declare that this study received no financial support.

DISCLOSURE STATEMENT

No potential conflict of interest was reported by the authors.

REFERENCES

