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Universidad Autónoma de Madrid
28049 Madrid, Spain

E-mail: alejandro.mas@uam.es

J.M. Sepulcre
Departamento de Matemáticas
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Abstract

In this paper we study the global distribution of zeros of expo-
nential polynomials with complex coefficients and frequencies. For
any P (z) in some class of such polynomials, we show that the clo-
sure of the projection of P−1(0) on a certain line is a finite union of
disjoint segments. We describe this set, in particular we discuss the
case where it consists of one segment.

1 Introduction

For each integer n ≥ 2, let

(1.1) P (z) = m1e
α1z +m2e

α2z + . . .+mne
αnz, z ∈ C,

be an exponential polynomial with non-zero complex coefficientsm1, m2, . . . ,

mn and distinct complex frequencies α1, α2, . . . , αn. It is known that P (z)
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is an entire function having infinitely many zeros located in certain specific

regions of the complex plane. The distribution of the zeros of such a poly-

nomial has been extensively studied during the twentieth century, mostly in

the first third of that century, due to its relation with some general problems

of the expansion theory for linear differential equations. See, for example,

[6], [9], [10], [15], [16] and [17].

If Q(z) = m1e
α1z +m2e

α2z + . . .+mne
αnz is an exponential polynomial

of type (1.1) with real frequencies α1 < α2 < . . . < αn, it is not difficult to

prove that the numbers

aQ := inf {Re z : Q(z) = 0} and bQ := sup {Re z : Q(z) = 0}

are both finite, and so the zeros of Q(z) lie in the vertical strip bounded by

the lines aQ + iR and bQ + iR. These bounds allow us to define an interval

IQ := [aQ, bQ], called the critical interval, which contains the closure of the

set of the real projections of the zeros of Q(z), denoted by

(1.2) RQ := {Re z : Q(z) = 0}.

To our best knowledge, the first work on the existence of zeros of Q(z) (with

real frequencies) arbitrarily close to any line contained in certain substrips

of its critical strip was made by Moreno in 1973 [8, Main theorem]. It is

also necessary to cite Avellar and Hale [1, Theorem 3.1], who introduced

in 1980 a criterion to decide whether a real number is in the set RQ. The

study of density properties of the real projections of the zeros of exponential

polynomials with real frequencies has recently become a topic of increasing

interest (see for example [2, 3, 4, 5, 7, 11, 12, 13, 14]).

In this paper, we first analyse in Section 2 the global position of the

zeros of the general class of exponential polynomials of type (1.1). The rest

of the paper is devoted to generalize the procedure used in [7] in order to

extract similar results in a more general case (specially in the case where

exponential polynomials satisfy conditions presented in Notation 3.4). In

short, for this type of polynomials, our paper provides a description of the

set RP defined as the closure of the projection of P−1(0) on a certain line

(see Proposition 3.2 and Theorem 3.3) and, in fact, its main results can be

summarized by:

i) The set RP is the union of a finite amount of disjoint nondegenerate

line segments (see Theorem 3.3);

ii) If the coefficients of P (z) have the same absolute value, then the set

RP consists of one segment (see Corollary 3.5).
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2 The global position of the zeros of expo-

nential polynomials

The distribution of the set of zeros of exponential polynomials with poly-

nomial coefficients and complex frequencies was studied by several authors

such as Pólya [9, p. 286] or Langer [6, Theorem 8]. If P (z) = m1e
α1z +

m2e
α2z + . . . +mne

αnz is an exponential polynomial, let ZP denote the set

of its zeros, and let CP denote the convex hull conv{α1, . . . , αn}. Then the

zeros of P (z) lie in half-strips in the directions of the exterior normals to CP .

For completeness we will provide the proof of this result. First, we consider

some particular cases.

Let

(2.1) Q(z) = m1e
α1z +m2e

α2z + . . .+mne
αnz, z ∈ C,

where n ≥ 2, be an exponential polynomial with non-zero complex coef-

ficients m1, m2, . . . , mn and distinct real frequencies α1 < α2 < . . . < αn.

Thus Q(z) has the same set of zeros as

Q1(z) =
Q(z)

m1eα1z
= 1 +

m2

m1
e(α2−α1)z + . . .+

mn

m1
e(αn−α1)z,

which is an exponential polynomial with increasing positive frequencies 0 <

α2 − α1 < . . . < αn − α1. Since

lim
x→−∞

Q1(x+ iy) = 1, lim
x→+∞

Q1(x+ iy)
mn

m1

e(αn−α1)(x+iy)
= 1,

for any value of y, there exist x1 < 0 < x2 such that

|Q1(z)− 1| < 1, for all z with Re z ≤ x1,

and
∣

∣

∣

∣

∣

Q1(z)
mn

m1
e(αn−α1)(x+iy)

− 1

∣

∣

∣

∣

∣

< 1, for all z with Re z ≥ x2.

Hence Q1(z) has no zero neither in the half-plane Re z ≤ x1 nor in the half-

plane Re z ≥ x2. Consequently all the zeros of Q(z), which are the same as

zeros of Q1(z), are situated in the vertical strip {z ∈ C : x1 < Re z < x2}.

Let

R(z) = m1e
β1z +m2e

β2z + . . .+mne
βnz, n ≥ 2,

be an exponential polynomial with non-zero complex coefficientsm1, m2, . . . ,

mn and with distinct complex frequencies β1, β2, . . . , βn whose principal ar-

guments are equal. Thus it can be written in the form

R(z) = m1e
α1e

iφz +m2e
α2e

iφz + . . .+mne
αne

iφz
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for some φ ∈ R and 0 ≤ α1 < α2 < . . . < αn. Then the exponential

polynomial Q(z) = R(e−iφz) = m1e
α1z + . . . +mne

αnz is of type (2.1) and

therefore there exist x1 < 0 < x2 such that

(2.2) ZQ ⊂ {z ∈ C : x1 < Re z < x2}.

More so, it is clear that ZR = e−iφZQ. In fact, if z0 ∈ ZR then

z0e
iφ = Re z0 · cosφ− Im z0 · sin φ+ i(Im z0 · cosφ+ Re z0 · sin φ) ∈ ZQ.

From (2.2) we have that x1 < Re(z0e
iφ) < x2. Hence all the zeros of R(z)

are in the strip

{z ∈ C : x1 < Re z·cos φ−Im z·sinφ < x2} = {z ∈ C : x1 < Re(zeiφ) < x2}.

More generally, let

(2.3) S(z) = m1e
γ1z +m2e

γ2z + . . .+mne
γnz, n ≥ 2,

be an exponential polynomial with non-zero complex coefficientsm1, m2, . . . ,

mn and with distinct aligned (or co-linear) frequencies γ1, γ2, . . . , γn. With-

out loss of generality we may assume that there exists ϕ ∈ [0, π) such that

the frequencies of S(z) can be written in the form

γj = γ1 + αje
iϕ, j = 1, 2, . . . , n,

with 0 = α1 < α2 < . . . < αn. Hence

S(z) = m1e
γ1z

(

1 +
m2

m1

eα2e
iϕz + . . .+

mn

m1

eαne
iϕz

)

.

Notice also that the exponential polynomial Q(z) = S(ze−iϕ) is so that

ZS = e−iϕZQ. Moreover, since the set of zeros of Q(z) coincides with that

of the exponential polynomial 1 +
m2

m1
eα2z + . . .+

mn

m1
eαnz, which is of type

(2.1), there exist x1 < 0 < x2 such that ZQ ⊂ {z ∈ C : x1 < Re z < x2}.

Consequently, if z0 ∈ ZS then z0e
iϕ ∈ ZQ and x1 < Re(z0e

iϕ) < x2. That

means that all the zeros of S(z) are in the strip

(2.4)

{z ∈ C : x1 < Re(zeiϕ) < x2} = {z ∈ C : x1 < Re z·cosϕ−Im z·sinϕ < x2}.

We next deal with the general case where we will divide the plane into a

finite number of sectors and, subsequently, we will apply the methods above

to each of them.
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Before going to this, let us recall the following elementary remark that

will be taken into account: if V = (a, b) and U = (cos γ, sin γ) are two vectors

in the plane, with a, b, γ ∈ R, so that 0 ≤ θ ≤ π
2
is the angle between them,

then the length of the orthogonal projection of V on the direction of U is

||V || cos θ, and thus the scalar product of U and V coincides with it.

Theorem 2.1. Let

P (z) = m1e
α1z + . . .+mne

αnz, n ≥ 2,

be an exponential polynomial of type (1.1) and let CP = conv{α1, . . . , αn}.

Then all the zeros of P (z) lie in half-strips in the directions of the exterior

normals to CP .

Proof. Let l1, l2, . . . , lq be the sides of CP taken in counterclockwise suc-

cession with any one as the initial side and, for each r = 1, 2, . . . , q, let

αr,1, αr,2, . . . , αr,hr
be the complex conjugates of the frequencies of P (z)

which lie on the side lr, the succession being again in the counterclock-

wise sense around the polygon CP . First notice that it is possible that some

complex conjugates of the frequencies, say α0,1, α0,2, . . . , α0,h0
, lie within

the polygon CP . Finally, we denote as mr,i the coefficient of P (z) associ-

ated with αr,i. Given r ∈ {1, 2, . . . , q}, let γ be a real number such that

wr−1+ ε ≤ γ < wr + ε where wr is the inclination angle of the outer normal

to the side lr and ε > 0 is sufficiently small. (Considering all the possible

values of r, note that the set of these sectors completely fills out the complex

plane). If z = |z|eiγ and αs = as + ibs ∈ C, it is worth noting that

Re
(

αse
iγ
)

= Re ((as + ibs)(cos γ + i sin γ)) = as cos γ−bs sin γ = Re
(

αse
−iγ

)

and

(2.5) |eαsz| =
∣

∣

∣
e(as+ibs)|z|eiγ

∣

∣

∣
= e|z|(as cos γ−bs sinγ) = e|z|Re(αse

−iγ).

Moreover, as cos γ − bs sin γ can be expressed as the scalar product of the

vectors αs = (as,−bs) and eiγ = (cos γ, sin γ). So, by the remark before the

theorem, if the term Re (αse
−iγ) is positive, it is represented geometrically

by the absolute value of the projection of (as,−bs) on the direction of eiγ .

Now, from this geometrical interpretation, and since wr−1+ ε ≤ γ < wr+ ε,

we have

(2.6) Re
(

αs,ke
−iγ

)

< Re
(

αr,1e
−iγ

)

, with s 6= r and k ∈ {1, 2, . . . , hs}.
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Note that if Re (αs,ke
−iγ) < 0 for some s 6= r and k ∈ {1, 2, . . . , hs}, in-

equality (2.6) is trivially true. Also, if γ = wr it is clear that Re (αr,1e
−iγ) =

Re (αr,2e
−iγ) = . . . = Re (αr,hr

e−iγ). Now take z = |z|eiγ ∈ C, then

P (z) = m1e
α1z+m2e

α2z+. . .+mne
αnz =

hr
∑

k=1

mr,ke
αr,kz+

q
∑

s=0,s 6=r

hs
∑

k=1

ms,ke
αs,kz

and, by dividing by mr,1e
αr,1z, the set of zeros of P (z) is the same as the set

of solutions of the equation

(2.7) 1 +
hr
∑

k=2

mr,k

mr,1
e(αr,k−αr,1)z +

q
∑

s=0,s 6=r

hs
∑

k=1

ms,k

mr,1
e(αs,k−αr,1)z = 0.

Let s ∈ {0, 1, . . . , q} with s 6= r and k ∈ {1, 2, . . . , hs}. From (2.5), we have

(2.8)
∣

∣e(αs,k−αr,1)z
∣

∣ = e|z|(Re(αs,ke
−iγ)−Re(αr,1e

−iγ)).

Therefore, we deduce from (2.6) and (2.8) that

lim
|z|→∞

e|z|(Re(αs,ke
−iγ)−Re(αr,1e

−iγ)) = 0.

Consequently, noticing (2.7), all but finitely many of the zeros of P (z) are

determined by the exponential polynomial 1 +
∑hr

k=2
mr,k

mr,1
e(αr,k−αr,1)z , whose

zeros are the same as those of Sr(z) =
∑hr

k=1mr,ke
αr,kz. Finally, since the

frequencies of Sr(z) are aligned (their conjugates lie on the side lr), we

deduce from (2.4) that the zeros of Sr(z) are in a half-strip that is parallel

to the normal to the side lr, i.e. the one which points in the same direction

as wr. Consequently, by repeating this process for each r = 1, 2, . . . , q, we

obtain the result.

Example 2.2. Consider the exponential polynomial

P (z) = (2 + i)e2z + (−1 + i)e(1.38−1.9i)z + 3e(3−3.08i)z+

+ 3ie(4.62−1.9i)z + (1 + 2i)e4z + e3z + ie(3−i)z ,

whose frequencies are α1 = 2, α2 = 1.38 − 1.9i, α3 = 3 − 3.08i, α4 =

4.62− 1.9i, α5 = 4, α6 = 3, α7 = 3− i. Figure 1 presents the convex hull

CP of the set {α1, α2, α3, α4, α5, α6, α7}, as well as the distribution of those

zeros of P (z) whose real and imaginary part is between −30 and 30. As one

can observe, it follows the description given in Theorem 2.1.
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Figure 1: The convex hull CP and the zeros of P (z), respectively, in Example 2.2

3 Projections of the zeros of exponential poly-

nomials

By Theorem 2.1, given an exponential polynomial P (z) of type (1.1), the

study of the properties of its zeros must be carried out in each one of the

half-strips where the zeros of P (z) are located. So, let

S(z) = m1e
γ1z +m2e

γ2z + . . .+mne
γnz, n ≥ 2,

be an exponential polynomial of type (2.3) with distinct co-linear frequencies

γ1, γ2, . . . , γn. Hence, without loss of generality, there exists ϕ ∈ [0, π) such

that S(z) can be written as

(3.1) m1e
(γ1+α1e

iϕ)z +m2e
(γ1+α2e

iϕ)z + . . .+mne
(γ1+αne

iϕ)z, n ≥ 2,

for some 0 = α1 < α2 < . . . < αn.

In this section we are interested in the set

(3.2) RS = {e−iϕRe(zeiϕ) : S(z) = 0},

which is the closure of the set of the projections of the zeros of S(z) on the

straight line L−ϕ which goes through the origin and has e−iϕ as director

vector. Geometrically, given a straight line Lx0

−ϕ+π
2

which has e−i(ϕ−π
2
) as

director vector and that goes through the point x0e
−iϕ, with x0 ∈ R, the

point x0e
−iϕ belongs to the setRS when S(z) possesses zeros arbitrarily close

to the straight line Lx0

−ϕ+π
2

. That means that for fixed ε > 0 there exists a

complex number z∗ such that S(z∗e−iϕ) = 0 and |σ∗−x0| < ε, where σ∗e−iϕ

is the orthogonal projection of z∗e−iϕ on the straight line L−ϕ.
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It is worth to notice that an interval of the form (x1e
−iϕ, x2e

−iϕ) = {z ∈

C : z = xe−iϕ, x1 < x < x2}, with x1 < x2, is contained in RS when every

point xe−iϕ with x1 < x < x2 is an accumulation point of the set defined

by the orthogonal projections of the zeros of S(z) on the straight line L−ϕ.

That is, if RS is a perfect set, it is immediate that a point x0e
−iϕ is in RS

when x0e
−iϕ is an accumulation point of the set defined by the orthogonal

projections of the zeros of S(z) on the straight line L−ϕ.

Notice that if ϕ = 0 then the zeros of S(z) can be seen as those of an

exponential polynomial with real frequencies, and the set RS corresponds

with the closure of the set of the real projections of the zeros of S(z).

Hence the expression given in (3.2) generalizes that of (1.2) for the case of

exponential polynomials with co-linear frequencies.

Remark 3.1. Let S(z) = m1e
(γ1+α1e

iϕ)z+m2e
(γ1+α2e

iϕ)z+. . .+mne
(γ1+αne

iϕ)z

be an exponential polynomial of type (3.1). It is easy to check that

RS = {e−iϕRe z : S1(z) = 0},

where S1(z) = 1 +
m2

m1
eα2z + . . .+

mn

m1
eαnz. In fact, S(z0) = 0 if and only if

S1(z0e
iϕ) = 0. In particular, RS has the same topological properties as the

set RS1
= {Re z : S1(z) = 0}.

In order to investigate properties of RS, we shall consider exponential

polynomials

S(z) = m1e
γ1z +m2e

(γ1+α2e
iϕ)z + . . .+mne

(γ1+αne
iϕ)z , n ≥ 2,

of type (3.1) with 0 < α2 < . . . < αn linearly independent over the field

of the rational numbers. If S1(z) is the exponential polynomial which was

defined in Remark 3.1, consider the points

aS1
= inf{Re z : S1(z) = 0} and bS1

= sup{Re z : S1(z) = 0},

which are the extreme points of the set RS1
and, by [7, Theorem 3], the

unique real solutions of the real equations

1 =
n

∑

j=2

|mj |

|m1|
eαjx,

|mn|

|m1|
eαnx = 1 +

n−1
∑

j=2

|mj|

|m1|
eαjx,

respectively. Thus, from Remark 3.1, the extreme points of the set RS are

aS = aS1
e−iϕ and bS = bS1

e−iϕ.

The following proposition provides a pointwise characterization of RS

when the co-linear frequencies of S(z) satisfy the condition above.
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Proposition 3.2. Let S(z) = m1e
γ1z+m2e

(γ1+α2e
iϕ)z + . . .+mne

(γ1+αne
iϕ)z,

n > 2, be an exponential polynomial of type (3.1) with 0 < α2 < . . . < αn

linearly independent over the rationals. Then a complex number of the form

σ0e
−iϕ, where σ0 ∈ R, is in RS if and only if σ0 satisfies

(3.3)

1 ≤

n
∑

j=2

∣

∣

∣

∣

mj

m1

∣

∣

∣

∣

eαjσ0 ;

∣

∣

∣

∣

mk

m1

∣

∣

∣

∣

eαkσ0 ≤ 1 +

n
∑

j=2,j 6=k

∣

∣

∣

∣

mj

m1

∣

∣

∣

∣

eαjσ0 , k = 2 . . . , n.

Proof. The polynomial S1(z) = 1 +
m2

m1
eα2z + . . . +

mn

m1
eαnz has positive

real frequencies α2 < . . . < αn which are linearly independent over the

rationals. Thus, from [14, Theorem 6], we have that σ0 ∈ RS1
if and only if

(3.3) is satisfied. Now, by Remark 3.1, we have that σ0 ∈ RS1
if and only if

σ0e
−iϕ ∈ RS, and the result follows.

As a consequence of the result above, given two real numbers σ0 < σ1,

it is now immediate that the line segment {z ∈ C : σ0 < zeiϕ < σ1} is

contained in RS if and only if

(3.4) 1 ≤
n

∑

j=2

∣

∣

∣

∣

mj

m1

∣

∣

∣

∣

eαjx;

∣

∣

∣

∣

mk

m1

∣

∣

∣

∣

eαkx ≤ 1+
n

∑

j=2,j 6=k

∣

∣

∣

∣

mj

m1

∣

∣

∣

∣

eαjx, k = 2 . . . , n,

for every x ∈ (σ0, σ1). This characterization is analogous to that of [7,

Theorem 1].

Hence the study of inequalities (3.4) is essential to identify the boundary

points of the set RS. In this respect, under the same conditions as the propo-

sition above, we easily deduce from [7, Lemma 2] that if z0 is a boundary

point of RS, then z0e
iϕ ∈ R satisfies all the inequalities (3.4) and only one

of them is an equality. Likewise, by [7, Theorem 3], we can assure that the

extreme points of the set RS, denoted above as aS and bS, are not isolated

points in the set RS.

Concerning this subject, let [x1e
−iϕ, x2e

−iϕ] and [x3e
−iϕ, x4e

−iϕ], with

x1 < x2 < x3 < x4, be two disjoint line segments contained in RS. From

now on, we will say that the interval (x2e
−iϕ, x3e

−iϕ) is a gap of RS when

no point of the form xe−iϕ with x2 < x < x3 belongs to the set RS. In

this sense, the fact that RS does not consist of one segment depends on the

exact number of real solutions of any of the n− 2 equations

(3.5)

∣

∣

∣

∣

mk

m1

∣

∣

∣

∣

eαkx = 1 +
n

∑

j=2,j 6=k

∣

∣

∣

∣

mj

m1

∣

∣

∣

∣

eαjx, k = 2 . . . , n− 1.

In this respect, by virtue of [7, Lemma 8 and Theorem 9], notice that each

equation (3.5) has at most two real solutions which are in RS1
⊂ [aS1

, bS1
]
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and they are candidates of the boundary points of RS1
. In fact, if we denote

as Ak ⊂ R, 2 ≤ k ≤ n − 1, the set of points satisfying the k-th non-

strict inequality from (3.5), then there always exist ck ≤ dk such that Ak =

(−∞, ck]∪ [dk,∞), and the boundary points of RS1
appear when ck < dk in

view of the fact that

RS1
= [aS1

, bS1
] ∩

n−1
⋂

k=2

Ak = [aS1
, b1] ∪ [a2, b2] ∪ . . . ∪ [al−1, bl−1] ∪ [al, bS1

],

where aS1
< b1 < a2 < . . . < bl−1 < al < bS1

and {b1, a2, b2, . . . , al−1, bl−1, al}

⊂ {c2, d2, . . . , cn−1, dn−1} (with ck < dk). Indeed the following theorem,

which is now deduced from [7, theorems 9 and 10], gives a precise description

of the set RS and, in fact, it establishes a bound for the number of gaps

of RS and the reason for which these gaps are produced. Furthermore, we

provide a sufficient condition which guarantees that the set RS consists of

one segment.

Theorem 3.3. Let S(z) = m1e
γ1z + m2e

(γ1+α2e
iϕ)z + . . . + mne

(γ1+αne
iϕ)z,

n ≥ 2, be an exponential polynomial of type (3.1) with 0 < α2 < . . . < αn

linearly independent over the rationals.

i) RS is either [aS, bS] or the union of at most n−1 disjoint nondegener-

ate line segments. In the latter case, the gaps of RS are associated with

those equations (3.5) which have two real solutions, i.e. (xe−iϕ, ye−iϕ)

is a gap of RS if and only if x = bj and y = aj+1, where 1 ≤ j ≤ l− 1

and the aj’s and bj’s are considered above.

ii) If |m1| = |m2| = . . . = |mn|, then RS = [aS, bS], i.e. RS consists of

one segment.

Finally, in the more general case of an exponential polynomial P (z)

with distinct complex frequencies (not necessarily co-linear), according to

Theorem 2.1, we must consider the union of q sets of type (3.2), where q

is the number of sides of the convex polygon CP . In this manner, let RP

denote the union of those sets, and let us introduce the following notation.

Notation 3.4. Consider P (z) = S1(z)+. . .+Sq(z) of type (1.1), with Sr(z)

an exponential polynomial such that the complex conjugates of its frequencies

lie on the side lr of the polygon CP , where r = 1, . . . , q. If that is the case,

let CI denote the set of those P (z) for which each Sr(z) can be written as

an exponential polynomial of type (3.1) with 0 < α2 < . . . < αn linearly

independent over the rationals.
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Now, we deduce from Theorem 3.3 that RP is the union of a finite amount

of disjoint nondegenerate line segments for any P (z) in the class CI . Also, as

a clear consequence of Theorem 2.1, the following result for this particular

class of exponential polynomials holds.

Corollary 3.5. Let P (z) = S1(z)+ . . .+Sq(z) be an exponential polynomial

in the class CI where q is the number of sides of the convex polygon CP . If

the coefficients of any Sr(z) have the same absolute value, then each one of

the q sets of RP consists of one segment.

It is clear that the results above can be applied to any exponential poly-

nomial with the same set of zeros. In this sense, in the paper [12] the authors

identify the families of exponential polynomials with the same set of zeros.

Example 3.6. Consider the exponential polynomial

S(z) = e(−1+2i)z + 5e(−1+2i+log(2)e
3πi
4 )z + 7ie(−1+2i+log(11)e

3πi
4 )z+

+ 17e(−1+2i+log(83)e
3πi
4 )z + 25e(−1+2i+log(179)e

3πi
4 )z+

+ 11ie(−1+2i+log(601)e
3πi
4 )z + ie(−1+2i+log(1193)e

3πi
4 )z.

Observe that S(z) is of type (3.1) where γ1 = −1 + 2i, ϕ =
3π

4
, α1 = 0,

α2 = log 2, α3 = log(11), α4 = log(83), α5 = log(179), α6 = log(601) and

α7 = log(1193). Note also that {α2, α3, α4, α5, α6, α7} is linearly independent

over the rationals. Moreover, S(z) is associated (see Remark 3.1) with the

exponential polynomial

S1(z) = 1 + 5elog(2)z + 7ielog(11)z + 17elog(83)z+

+ 25elog(179)z + 11ielog(601)z + ielog(1193)z ,

which satisfies RS = {e−iϕRe z : S1(z) = 0}.

The extreme points of the set RS1
, denoted as aS1

and bS1
, are respectively

determined by the equations

5 · 2σ + 7 · 11σ + 17 · 83σ + 25 · 179σ + 11 · 601σ + 1193σ = 1,

and

1 + 5 · 2σ + 7 · 11σ + 17 · 83σ + 25 · 179σ + 11 · 601σ = 1193σ,

whose solutions are aS1
≈ −2.358 and bS1

≈ 3.544. The distribution of

zeros of S1(z) with imaginary part between −200 and 200 can be observed
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Figure 2: Distribution of zeros of the polynomial S1(z) defined in Example 3.6

on Figure 2. Hence the extreme points of RS are aS ≈ −2.358e−
3π
4
i and

bS ≈ 3.544e−
3π
4
i. Furthermore, equalities (3.5) are given in this case by

5 · 2σ = 1 + 7 · 11σ + 17 · 83σ + 25 · 179σ + 11 · 601σ + 1193σ,(3.6)

7 · 11σ = 1 + 5 · 2σ + 17 · 83σ + 25 · 179σ + 11 · 601σ + 1193σ,(3.7)

17 · 83σ = 1 + 5 · 2σ + 7 · 11σ + 25 · 179σ + 11 · 601σ + 1193σ,(3.8)

25 · 179σ = 1 + 5 · 2σ + 7 · 11σ + 17 · 83σ + 11 · 601σ + 1193σ,(3.9)

11 · 601σ = 1 + 5 · 2σ + 7 · 11σ + 17 · 83σ + 25 · 179σ + 1193σ.(3.10)

Figure 3: Distribution of zeros of the polynomial S(z) defined in Example 3.6

We next use Theorem 3.3 in order to calculate the disjoint line segments

of RS. The equality in (3.6) is reached at d1 ≈ −2.278 and d2 ≈ −0.824.

The equality in (3.10) is reached at d3 ≈ 1.078 and d4 ≈ 3.443. Finally,
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equalities (3.7), (3.8) and (3.9) have no real solutions. Therefore, the gaps

in RS1
are (d1, d2) and (d3, d4), as we observe in Figure 2. Consequently,

the gaps in RS are determined by the line segments (d1e
− 3π

4
i, d2e

− 3π
4
i) and

(d3e
− 3π

4
i, d4e

− 3π
4
i). Figure 3 presents the distribution of zeros of S(z) with

the imaginary and real part between −40 and 40.
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