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1. Introduction 
 

For extended structures, such as bridges, seismic ground 

motions at different supports are inevitably not the same in 

terms of amplitude and phase. This is the result of seismic 

wave propagation and local site geological conditions. 

During an earthquake, spatial variation of ground motions 

are caused by coherency loss, wave passage and local site 

effects (Harichandran and Vanmarcke 1986, Der Kiureghian 

1996). 

Past investigations indicate that the effect of spatial 

variation of seismic motions on the structural responses 

cannot be neglected, and can be, in some cases, detrimental 

(Zerva 2009, Konakli and Der Kiureghian 2012). Most of 

these studies are based on spatial ground motion coherency 

loss functions and time delay. The site under consideration 

is assumed to be uniform and homogeneous. 

In earthquake resistant design of multiple supports 

structures, properly define seismic ground motions is 
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fundamental for a reliable analysis of structural responses. 

For this purpose, the seismic ground motion must 

considering earthquake spatial variability in terms of loss 

coherency effect, wave passage effect and, in particular, 

local site effect (Derbal et al. 2018, Derbal et al. 2017, 

Zhang et al. 2013, Adanur et al. 2016, Yao et al. 2018, 

Shiravand and Parvanehro 2019). 

Besides ground motion time histories, ground motion 

response spectrum and power spectral density function are 

the most commonly used parameters to define seismic load 

of a structure. Many ground motion power spectral density 

functions have been developed by different researchers, 

such as the Tajimi-Kanai power spectral model (Tajimi 

1960) and the Clough-Penzien model (Clough and Penzien 

1993). Both of them were proposed by assuming the base 

rock excitation is a white noise random process, and the 

surface ground motion is estimated by calculating the 

responses of a single soil layer to the white noise excitation 

(Bi et al. 2010). 

It should be noted that considering site to be uniform 

and homogeneous, will lead to inaccurate ground motion 

representation in case of a canyon site (Bi et al. 2010, Bi 

and Hao 2012). At a canyon site, the spatial variable ground 

motions at base rock can still be assumed to have the same 

power spectral density, but on ground surface, the ground 
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motion power spectral densities will be very different owing 

to seismic wave propagation through different wave paths 

that cause different site amplifications. Uniform ground 

motion power spectral density assumption in such situation 

may lead to erroneous the estimation of structural responses 

(Bi et al. 2010). 

Many researchers have investigated the spatial varying 

seismic ground motion by considering local site effect. Bi et 

al. (2010), have proposed an approach where the spatial 

ground motions are modelled by considering that the base 

rock motions have the same intensity. A filtered Tajimi-

Kanai power spectral density function and an empirical 

spatial ground motion coherency loss function are used to 

define seismic ground motion. Based on the one 

dimensional seismic wave propagation theory, power 

spectral density function of ground motion on surface is 

derived by considering the site amplification effect. A 

Discussion on the ground motion spatial variation and site 

amplification effects on structural responses are made. Bi et 

al. (2010) conclude that neglecting local site conditions on 

the spatial ground motion effects in structural analysis can 

lead to inaccurate estimation of dynamics responses.  

Konakli and Der Kiureghian (2012) presented a 

simulation method of the spatial variable seismic ground 

motions incorporating the effects of incoherence, wave 

passage, and differential site response. They proposed two 

approaches. The first is the conditional simulation where 

the motions are consistent with the power spectral densities 

of a segmented recorded motion and are characterized by 

uniform variability at all locations. They affirmed that 

uniform variability in the array of ground motions is 

essential when synthetic motions are used for statistical 

analysis of the response of multiply‐supported structures. 

While for the second simulation, the ground motions are 

conditioned on the segmented record itself and exhibit 

increasing variance with distance from the site of the 

observation. An example simulated motions are presented 

for an existing bridge model. The site effect is modeled 

using two ways. At the first, each soil‐column is idealizing 

as a single degree of freedom oscillator. Then, they use the 

theory of vertical wave propagation in a single soil layer 

over bedrock. The proposed method was validated by 

comparing statistical characteristics of the synthetic motions 

with target theoretical models. 

It should also be noted that often, for reasons of 

unavailability of seismic recordings in a region, several 

researchers resort to synthetic accelerograms (Beneldjouzi 

et al. 2017).  
Based on the theory of wave propagation developed by 

Wolf (1985), Bi and Hao (2012) have developed an 
approach for generating asynchronous seismic ground 
motions considering local site effects. The motion at the 
rock base is assumed to be composed of SH wave (off-plan) 
or the combination of P and SV waves with an incident 
angle given. The generated seismic ground motions are 
compatible with the spectral density functions of target 
response spectra. It was conclude that the proposed 
approach leads to a more realistic modeling of the 
asynchronous seismic ground motions in sites with different 
characteristics compared to the assumption of same 
intensity of ground motion.  

Using the model developed by Der Kiureghian (1996), 

Dumanogluid and Soyluk (2003) analyzed responses of a 

long span structure to spatially varying ground motions with 

site effect. It was concluded that although it was difficult to 

draw general conclusions because of the limited analyses 

performed, it was clear that ground motion spatial variation 

and site effects significantly affect the structural responses; 

considering different site effects at multiple supports 

generated larger structural responses; the more significant 

was the difference between the site conditions at the 

multiple supports, the larger was the structural responses. It 

was conclude that the site effects significantly affect 

structural responses.   

It is know that seismic codes classify the foundation soil 

into several types giving them, predefined characteristics 

principally in terms of shear wave propagation velocity. 

Consequently, the characteristics of the real ground are 

converted to be equivalent as close as possible to a ground 

type defined by the seismic codes. Based on this principle, a 

spatially variable seismic ground motion generation model 

was developed taking into account the site effect by 

considering a single layer of soil. 

Most recent studies have shown that the local site 

conditions should not be neglected when interpreting the 

spatial variability of seismic ground motion (Derbal et al. 

2018, Derbal et al. 2017, Zhang et al. 2013, Yao et al. 2018, 

Shiravand and Parvanehro 2019). Consequently, the model 

proposed in this study takes into account all effects of 

spatial variability of ground motion, in particular the local 

site effect.  

The aim of this study to quantify the influence of the site 

effect considering a spatial variability of seismic ground 

motion on the dynamic response of a railway viaduct. 

Several simulation of seismic spatial ground motion are 

made for each support. Dynamics responses to uniform 

ground motion and to spatial ground motion with and 

without considering site effect are calculated and compared. 

A discussion on the ground motion spatial variation and 

local soil site amplification effects on structural dynamics 

responses is made. 
However, when considering SVGM, FE (Finite 

Element) dynamic analysis is generally performed using the 
displacement time histories as an input. In other words, the 
displacement time histories need to be evaluated from the 
spatially variable simulated accelerations. But experiences 
show that direct integration of the acceleration data often 
causes unrealistic drifts in the derived velocity and 
displacement. A correction scheme must be used to ensure 
compatibility between simulated accelerations, velocities 
and displacements time histories. In the present study, the 
simulation model of spatial ground motion model described 
by Benmansour et al. (2012) is used (Benmansour 2013). 
This model was developed to automatically derive the 
compatible displacement signals from spatially variable 
simulated accelerations. 

 

 

2. Geometry of the railway viaduct 
 

The railway viaduct is a part of the new high-speed line, 

situated in the north west of Algeria. Its typology is a 
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(a) 

 
(b) 

Fig. 2 Structural elements sections (in cm) (a) section of the 

deck; (b) Piers section 

 
 

continuous deck with four spans of 35 m length (see Fig. 1), 

composed of steel beams with a height of 2.30 m supporting 

a concrete slab with average thickness of 0.40 m, resting on 

stacks of solid section (see Fig. 2(a)).The viaduct is curved 

with a total length of 140 m and a radius of curvature of 

5000 m. It is a viaduct with two independent decks and 

three piles with height varies between 11.90 m and 17.90 m. 

The piers have a section of 4×4 m². The detailed dimensions 

of this section are given in Fig. 2(b). 

The dead loads supported by the deck are computed and 

given by Table 1. The compressive strength selected for the 

dynamic analysis of the viaduct structure is 35 MPa for 

piles and 30 MPa for the deck slab. 

 

 
3. Viaduct finite element model 
 

In order to perform a dynamic analysis of the viaduct, a 

3D finite element model has been realized using a finite 

element code (see Fig. 3). The deck composed by steel 

beams and a concrete slab is idealized by shell elements  

 

Table 1 Dead loads on the deck 

Loads Value (KN/ml) 

Borders 3.75 

Sidewalks 5.76 

Rail UIC 60 2.40 

Travres 9.60 

Ballast 114.70 

Waterproofing 17.05 

 
Table 2 Periods and frequency of eigen modes of vibration 

Mode Mode 1 Mode 2 Mode 3 Mode 4 

Period (s) 0.7299 0.6825 0.4529 0.4188 

 

 

Fig. 3 Viaduct 3D finite element model 
 

 

supported by linear elements. The connection between steel 

beams and the cap beams upside of piles is assumed rigid 

and it is modeled by fixed link elements. All dynamic 

analysis were performed in assumption of a 5% damping 

coefficient. 

The first two eigen modes of vibration designate a 

transverse displacement along the Y axis. This is mainly due 

to the fact that the most vulnerable seismic action is in this 

direction. 

 

 

4. Generation of spatially variable ground motions 
 

4.1 Site configuration model 
 

The site foundation is modeled in single layer soil with 

various characteristics at each support. Fig. 5 illustrates this 

model, in which i, j, k, l and m are the supports on ground 

surface. The corresponding points at the base rock are i', j’, 

k’, l‘ and m’ respectively. 

Table 3 gives the soil parameters where 𝜌𝑥, 𝑣𝑥, 𝜉𝑥 and 

ℎ𝑥(x = 1,..,5) are densities, shear wave velocities, damping 

ratios and depths of the soil under support, respectively. The 

corresponding parameters on the base rock are 𝜌𝑅 =
30 KN/m3, 𝑣𝑅 = 1500 m/s  and 𝜉𝑅 = 5% (Bi and Hao 

2012). Fig. 5 shows longitudinal view of a bridge crossing a 

canyon with variable site. 

 

Fig. 1 Plan view of a viaduct 
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Fig. 5 Longitudinal view of viaduct crossing a canyon site 
 
 
4.2 Base rock motion model 

 
As assumption, the seismic ground motion at points i', 

j’, k’, l‘ and m’ which are on the base rock (see Fig. 5) have 

the same intensity in term of power spectral density. The 

filtered Tajimi-Kanai power spectral density function is 

used to define power spectral density at the base rock (Der 

Kiureghian 1996, Zerva 2009). 
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In which |𝐻𝑃(𝜔)|2 is a high pass filter (Bi et al. 2010), 

𝑆0(𝜔) is the Tajimi-Kanai power spectral density function 

(Tajimi 1960), 𝜔𝑔 and 𝜉𝑔 are the central frequency and 

damping ratio of the Tajimi-Kanai power spectral density 

function, Γ is a scaling factor depending on the ground 

motion intensity, and 𝜔𝑓 and 𝜉𝑓 are the central frequency 

and damping ratio of the high pass filter. 

In this study, it is assumed that 𝜔𝑓 = 0.25 × 2𝜋𝐻𝑧,    

𝜉𝑓 = 0.6 , 𝜔𝑔 = 5 × 2𝜋𝐻𝑧  and 𝜉𝑔 = 0.6  (Bi et al. 

2010). Assuming a ground acceleration of duration 𝑇 =
20 𝑠 and peak ground acceleration value PGA= 0.5𝑔. 

Γ = 0.022 m2/𝑠3 is estimated in this study according 

to the standard random vibration approach described by 

Kreiughian (Der Kiureghian 1996, Bi et al. 2010). 

 

 

Fig. 6 Filtered ground motion power spectral density 

function on the base rock (in acceleration) 

 

 

Fig. 7 Filtered ground motion power spectral density 

function on the base rock (in displacement) 

 

 

Figs. 6 and 7 show the power spectral density of the 

base rock acceleration and displacement respectively. 

 

4.3 Coherency loss model 
 

Seismic ground round motions at two distant points can 

vary significantly from each other, because the propagating 

seismic waves have a different arrival time at these 

locations, and the geological medium in the wave path can 

affect the characteristics of the propagating waves (Der 

Kiureghian 1996, Zerva 2009, Konakli and Der Kiureghian 

2012). 

The coherency loss function is generally complex. In the 

frequency domain, this function describes the correlation 

between two seismic ground motion time histories in terms 

of amplitudes and phase angles. This function has the 

following form (Der Kiureghian 1996, Bi and Hao 2012). 
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Fig. 4 Deformed shapes of the four modes of vibration 
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Where: 

ω is the circular frequency. 

𝑆𝑗𝑗(𝜔) , 𝑆𝑘𝑘(𝜔)  are the power spectral density 

functions of the time histories 𝑔𝑗(𝑡)  and 𝑔𝑘(𝑡) , 

respectively. 

𝑆𝑗𝑘(𝜔) is the cross-power spectral density of the time 

histories 𝑔𝑗(𝑡) and 𝑔𝑘(𝑡). 

This coherency loss function can be written as (Der 

Kiureghian 1996) 
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Where : 

𝑑𝑗𝑘  is the projected horizontal distance along the 

direction of propagation of the waves, which is from 

station 𝑗 to station 𝑘. 

𝑣𝑎 is the surface apparent velocity of waves, considered 

as constant over the frequency range of the wave. 

In the numerical simulation of spatially varying ground 

motions usually empirical coherency loss functions are 

applied (Bi and Hao 2012). In the present paper, the 

Sobczyk model (Bi et al. 2010) is selected to describe the 

coherency loss between the ground motions at points i' and 

j' (i' ≠ j') at the base rock 
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Where: 

𝑑𝑖′𝑗′ is the distance between the points j’ and k’ located 

at the base rock. 

𝛼 is the incident angle of the incoming wave to the site, 

and is assumed to be 𝜋 3⁄ . 

β is a coefficient which reflects the level of coherency 

loss, 𝛽 = 5 ∙ 10−4 (Bi et al. 2010). 

𝑣𝑎 = 1768 m/s  is at the base rock, according to the 

base rock property and the specified incident angle (Bi 

et al. 2010). 

 

4.4 Spatial seismic ground motion model 
 

Spatial earthquake ground motions on the base rock are 

assumed as stationary stochastic processes, with zero mean 

values, i.e., gaussian process, and having the same Tajimi-

kanai power spectral density function (Deodatis 1996). The 

cross power spectral density function of ground motions at 

n locations in a site can be written as 
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Using the definition of the coherence function cited 

above in Eq. (6), the cross power spectral density functions 

are written as follows (Bi et al. 2010, Bi and Hao 2012) 

)()()()(  jkkkjjjk SSS =  (8) 

The matrix 𝑆𝑗𝑘(𝑖𝜔)is Hermitian and positive definite. 

So, it can be decomposed into the multiplication of a 

complex lower triangular matrix 𝐿(𝑖𝜔)  and it’s 

Hermitian 𝐿𝐻(𝑖𝜔) as 

)()()(  iLiLiS H

jkjkjk =  (9) 

The decomposition can be performed using the 

Cholesky’s method. The lower triangular matrix 𝐿𝑗𝑘(𝑖𝜔) 

has the following form 
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The elements of 𝐿𝑗𝑘(𝑖𝜔) can be written in polar form 

as 

( ))(exp)()(  jkjkjk iLiL =    kj   (11) 
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Using Eq. (10) and Eq. (11) the stationary stochastic 

vector process 𝑔𝑗(𝑡) ;  𝑗 = 1,2, … , 𝑛. can be simulated by 

the following series as 𝑁 → ∞ (Benmansour 2013, Miao et 

al. 2018) 
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Where 

 = ll
    Nl ,...,2,1=  (14) 

Nu / =  (15) 

𝑁 : represents the number of the frequency step ∆𝜔 

needed to reach the upper cut-off frequency 𝜔𝑢. 

Table 3 Parameters of soil foundation 

Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 

𝜌1 (KN m3⁄ ) 𝑣1 (m s)⁄  𝜌2 (KN m3⁄ ) 𝑣2 (m s)⁄  𝜌3 (KN m3⁄ ) 𝑣3 (m s)⁄  𝜌4 (KN m3⁄ ) 𝑣4 (m s)⁄  𝜌5 (KN m3⁄ ) 𝑣5(m s)⁄  

2000 450 1500 250 1500 300 1400 230 1800 350 

𝜉1 ℎ1(𝑚) 𝜉2 ℎ2(𝑚) 𝜉3 ℎ3(𝑚) 𝜉4 ℎ4(𝑚) 𝜉5 ℎ5(𝑚) 

5% 56 5% 30 5% 29 5% 37 5% 54 
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The {𝜙𝑚𝑙} ; 𝑚 = 1,2, … , 𝑛 ; 𝑙 = 1,2, … , 𝑁 appearing in 

Eq. (13) are 𝑛 sequences of independent random phase 

angles distributed uniformly over the interval [0, 2𝜋]. 
Note that the developed simulation approach of seismic 

spatial ground motion gives directly a stationary time 

history series 𝑔𝑗(𝑡) in terms of acceleration, velocity and 

displacement. 

In this study, the non-stationary temporal variation of 

the simulated ground motions is expressed by multiplying 

the simulated stationary time histories by the Jennings 

envelope function (Jennings et al. 1968), as 

)()()( tgttf jj =     nj ,...,2,1=  (16) 

The Jennings envelope function has the following form 

( )

( ) 







−−





=

Ttttt

ttt

tttt

t

nn

n

155.0exp

1

0/

)( 0

0

2

0


 

(17) 

With 𝑡0 = 2 𝑠 and 𝑡𝑛 = 10 𝑠.  

For site amplification, we use the seismic wave 

propagation theory presented by Safak (1995), the transfer 

function for shear wave propagation in a horizontal layer of 

soil is given by 
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Where:  

𝑈𝑗(𝑖𝜔)  and 𝑈𝑗′(𝑖𝜔)  is the Fourier transform of the 

𝑢𝑗(𝑡) and 𝑢𝑗′(𝑡) 

𝜉𝑗  is the damping ratio accounting for energy 

dissipation owing to seismic wave propagation, 𝜉𝑗 =

1 4𝑄⁄  and 𝑄 is the quality factor. 

𝜏𝑗 is the wave propagation time from point j' to j with   

𝜏𝑗 = ℎ𝑗 𝑣𝑗⁄  

𝑟𝑗 is the reflection coefficient for up-going waves given 

by the equation: 
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The cross power spectral density function at point j and 

between point j and k has the following form 

)()()(
2

 gjjj SiHS =  (21) 

)()()()( ''
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(22) 

The index "*" represents the complex conjugate. 

It should be noted that the transfer function expressed in 

this study is derived for the case with a single layer of soil. 

The corresponding transfer functions for the five viaduct 

supports are illustrated in Fig. 8. This figure compares the 

transfer functions at surface points of viaduct with different  

 

Fig. 8 Site effect on ground motion spatial variations at 

supports 

 

 

Fig. 9 Displacements generated considering all factors of 

spatial ground motion 

 

 

Fig. 10 Displacements generated without considering local 

site effects 

 

 

soil types and thickness of layer. It indicates that the 

dominant frequency of a soil is dependent on its thickness, 

stiffness and density. 

 

 

5. Application and discussion 
 

5.1 Spatial seismic ground motion generated 
 
The proposed spatial seismic ground motion model, 

described above in paragraph 4.4, is performed using code 

program. The generated spatial ground motions are 

calculated on the basis of the mean of one hundred 

simulations (Zerva 2009). From these simulations, we can 

have the spatial seismic ground motion as accelerations, 

velocity or displacements. 

Figs. 9 and 10 gives the evolution of generated time 

history displacements in four cases: i) spatial seismic 

ground motion considering all factors of spatial ground 

motion, ii) spatial seismic ground motion without 

considering local site effect, iii) spatial seismic ground 

motion with considering only local site effect and iv)  
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Fig. 11 Displacements generated with considering only 

local site effect 

 

 

Fig. 12 Displacements generated in case of uniform seismic 

ground motion 

 

 

uniform seismic ground motion. 

Spatially correlated and non-stationary ground surface 

ground motions are produced on ground surface at points i, 

j, k, l and m for the case of spatial seismic ground motions 

considering all factors of earthquake spatial variability. 

Spatial seismic ground motion as displacements are shown 

in Figs. 9 to 12.  

In Fig. 9, we observe that the generated displacements 

of the first case i.e., spatial seismic ground motion 

considering all factors of spatial ground motion, have the 

highest values and present a random distribution according 

to the distance. While for the case of spatial seismic ground 

motion without considering local site effects, the generated 

displacements have lower values and a more regular 

distribution in space (Fig. 10). 

We can see also, that the displacements generated in the 

case of spatial seismic ground motion without considering 

local site effectsand those generated from the uniform 

seismic ground motion case are similar in terms of order of 

magnitude (size indication). 

As it was noted above, the factors of spatial seismic 

ground motion are loss coherency, time delay effect and 

local site effect. Fig. 11 shows that local site effect can 

provide seismic ground motion higher than those generated 

considering only loss coherency and time delay effects.  

In terms of seismic ground motion, it is clear that 

neglecting local site effect, i.e., considering only the loss 

coherency and time delay effects lead to an underestimation 

of the seismic loading that will be applied to the structure. 

 

5.2 Structural dynamic analysis 
 

Several dynamic analysis of the viaduct model are made 

using displacement time histories. The generated 

displacements are applied at the bottom of each viaduct 

support.  

 
(a) 

 
(b) 

Fig. 13 Comparison of dynamic response of piers under 

spatial ground motion without considering site effect and 

uniform ground motion. (a) Maximum bending moment.  

(b) Maximum shear force 

 

 

As explained above, four cases of ground motions were 

generated to be applied to viaduct structure. These four 

cases are: spatial seismic ground motion considering all 

factors of spatial ground motion (noted WSE: with site 

effect), spatial seismic ground motion without considering 

local site effect (noted WOSE: without site effect), spatial 

seismic ground motion with considering only local site 

effect and (noted SE Only: site effect) and uniform seismic 

ground motion (noted UNIF: Uniform). 

The results of the structural dynamic analysis, subjected 

to the four cases of excitations are compared in terms of 

bending moment and shear force in piers. The maximum 

values of the bending moments and shear force obtained at 

each pier are illustrated in Figs. 13 to 16. 

It is known that a uniform seismic ground motion 

consists to apply in the same time, an identical loading in 

acceleration or in displacement at all the supports of an 

extended structure. 

At the first, the results of the dynamic analysis of the 

viaduct model under a spatial ground motion taking into 

account the effect of loss coherence and time delay 

(WOSE) are compared with those given by a uniform 

ground motion (UNIF).It is noted that the bending moments 

developed by a spatial ground motion without considering 

site effect are slightly higher than those given by a uniform 

seismic ground motion for the three piles of viaduct. This 

increase varies between 2% and 5% (Fig. 13(a)). The same 

observation is given for shear force at the three piles with 

the same variation rates (Fig. 13(b)). 
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(a) 

 
(b) 

Fig. 14 Comparison of dynamic response of piers under 

spatial ground motion with considering site effect and 

uniform ground motion. (a) Maximum bending moment.  

(b) Maximum shear force 

 

 

Secondly, internal forces provided by viaduct structure 

subjected to a spatial seismic ground motion taking into 

account all factors of the spatial variability of ground 

motion, namely loss coherency effect, time delay effect and 

site effect (WSE) are compared with those developed for 

uniform ground motion. Indeed, spatial seismic ground 

motion WSE gives bending moments greater than those 

developed by a uniform ground motion. The increase at the 

first and second piers (P1 and P2) is about 10%. For the 

third pier P3, a significant increase appears with a ratio of 

22%. (Fig. 14(a)). The same variations were observed 

comparing shear force at the three piers P1, P2 and P3 (Fig. 

14(b)).  

The next phase consists at comparing the internal forces 

developed by viaduct structure under a spatial ground 

motion taking into account the effects of loss coherency and 

time delay (case WOSE), case of the major seismic codes 

approached by a simple formulation, and those given for a 

real seismic ground motion that takes all factors of spatial 

variability of seismic ground motion in particular site effect 

(case WSE). In Fig. 15, the bending moments of WSE case 

are greater than those developed by WOSE case for the 

three piers. The variation of bending moments and shear 

force is about 5% for the first pier P1 and 8% for the second 

pier P2. This ratio rises to 18% for the last pier P3 (Fig. 

15(a)-(b)). 

Finally, the results of dynamic analysis under spatial 

ground motion WOSE are compared with those given under 

spatial ground motion where only site effect was retained 

(SE only). In fact, the “SE only” case provide bending 

moments higher than those calculated from spatial ground 

 

(a) 

 
(b) 

Fig. 15 Comparison of dynamic response of piers under 

spatial ground motion with and without considering site 

effect. (a) Maximum bending moment. (b) Maximum shear 

force 

 

 

(a) 

 
(b) 

Fig. 16 Comparison of dynamic response of piers under 

spatial ground motion without considering site effect and 

that with considering only local site effect. (a) Maximum 

bending moment. (b) Maximum shear force 

 

 

motion WOSE in particular for the third pier P3 with a 

variation ratio about 13%. While for the first pier P1, this 
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ratio became 7%. The variation of bending moments at 

second pier P2 is negligible (Fig. 16(a)). Comparing shear 

force, we found the same remarks. The variation is about 

5% for pier P1 and 13% for piers P2 and P3 (Fig. 16(b)). 

During a seismic analysis under a spatial variable 

ground motion, the dynamic response is very sensitive to 

the variations of the displacements imposed at the base. 

In this case, it is evident that adopting a spatial seismic 

ground motion by considering only loss coherency and time 

delay effects leads to an underestimation of seismic 

demand. 

 

 

8. Conclusions 
 

A spatial seismic ground motion simulation model was 

developed. The proposed model takes into account all 

factors of spatial earthquake ground motion. Several spatial 

seismic ground motion are generated following the 

proposed model. These generated time history seismic 

ground motions are applied as seismic inputs to a curved 

viaduct.  

Four dynamic analysis of the viaduct model are made 

according to seismic ground motion cases. WSE, WOSE, 

SE Only and UNIF. The internal forces of the structural 

dynamic analysis, subjected to the four cases of excitations 

are compared in terms of bending moments and shear force 

in piers. 

Results of this study show that the dynamic analysis of 

viaduct under spatial seismic ground motion taking into 

account all factors of spatial ground motion, in particular, 

local site conditions leads to an increase of the seismic 

demand. The local site conditions can generate an 

amplification of seismic ground motion. Neglecting site 

effect, case of several studies, can lead to an 

underestimation of the internal forces developed by a 

structure. 
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