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Abstract 

KarsTS 2.2 is free, open-source, R-based software for microclimate time series, especially 
suited to the study of underground or highly insulated environments. The time series of 
interest include air temperature, humidity, and CO2 and 222Rn content, amongst others. These 
time series usually pose problems such as gaps, outliers, noise or relative shortness. KarsTS 
was born as a package for gap filling and thus, it offers multiple univariate and multivariate 
gap-filling tools well suited to these variables. However, as KarsTS was intended to be a self-
sufficient program, it soon grew to encompass several tools for linear and nonlinear time 
series analysis, preprocessing and plotting. Indeed, many of these variables show a nonlinear 
behavior that is often disregarded; for this reason, we aim to spread and facilitate the use of 
some methodologically appropriate analysis tools, even amongst researcher that do not feel 
comfortable using a console. In this paper, we introduce an overview of KarsTS functionality 
and we show its potential through some practical application examples on four-year time 
series of temperature from the Rull cave (Spain).   
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1. Introduction 

Microclimatic characterization is usually based on the continuous monitoring of several 
parameters as air temperature, relative humidity, pressure and gaseous carbon dioxide (CO2) 
and radon (222Rn) contents, amongst others (Cuezva et al. 2011). Microclimate characterization 
of such environments is a topic of great interest in the fields of cave art conservation (Bourges 
et al. 2014), historical heritage conservation (Camuffo et al. 2004), water resources 
management (Poulain et al. 2015), speleothems and paleoclimate reconstruction (Fairchild et 
al. 2016), human safety in underground environments (Alvarez-Gallego et al. 2015), and gases 
concentration and their interactions with the external atmosphere (Fernandez-Cortes et al. 
2015), including contributions to the global carbon cycle and its role in climatic change (Garcia-
Anton et al. 2017), amongst others. 

Subsurface environments such as caves, basements or mines are, in general, isolated from the 
outside by layers of rock and soil. This results in thermally stable atmospheres, commonly 
saturated in water vapor and enriched in CO2 and 222Rn. The inner microclimate depends on 
the outside climate but also on other factors such as the existence and location of openings, 
the characteristics and thickness of the bedrock and the soil, etc. As a consequence, the 
measured time series and the relationships between them can be extremely complex (Perrier 
at al. 2010; Baldini et al. 2006; Bourges et al. 2014).  

Missing values are another major problem in environmental time series. Karst series are 
particularly affected by the existence of gaps. The singular environmental conditions and the 
presence of animals or vandals may damage the measuring devices, causing a wide variety of 
gaps in the registered data. Long gaps, which can last several days or even weeks, even when 
they are no numerous, are the most problematic.  

KarsTS 2.2 is a multiplatform code with a friendly graphical interface for the analysis of 
microclimate time series. It is designed to address the specific set of problems that researchers 
face in the field of underground or insulated environments, such as caves or historical stone 
buildings; for this reason, amongst KarsTS broad functionality, its most noteworthy tools are 
related to gap filling and nonlinear analysis. 

KarsTS is based on R, which is a cross-platform open-source	computing environment, freely-
available under the GNU General Public License (Grunsky 2002). R relies on a system of more 
than 10 000 contributed open-source packages, which enhance greatly its functionality. 
Several R-packages are devoted to missing values and nonlinear time series. The packages 
mice (Buuren 2011), Amelia (Honaker et al. 2011), mi (Su et al. 2011], missForest (Stekhoven 
2013) and Hmisc (Harrell 2017) include tools for missing values imputation; however, many of 
their methods are not specific for time series and require normally distributed data. Regarding 
the packages for nonlinear time series, the package GPoM is devoted to nonlinear systems 
modelling (Mangiarotti et al. 2012a, 2012b). The package nlts provides tools for nonparametric 
autoregression and tests for linearity (Bjornstad 2017). The package tseriesEntropy offers an 
entropy measure and some tools derived from it (Giannerini 2017). The package tseriesChaos 
provides a number of analytic tools such as the correlation integral or the Lyapunov exponents 
(Di Narzo and Di Narzo 2013). Unfortunately, these methods generally require long time series, 
which are hardly available in microclimate research. Recurrence analysis, however, is a 
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methodology well-suited for the analysis of nonlinear, short and noisy observational time 
series (Marwan et al. 2007). It experienced great development in the last decades (e.g., 
Bradley and Mantilla 2002; Marwan and Kurths 2005; Romano et al. 2005; March et al. 2005; 
Thiel et al. 2008; Marwan 2011) and it has been applied successfully to other disciplines, such 
as climatology (Marwan et al. 2003), materials science (Nichols et al. 2006), economy (Strozzi 
et al. 2007), physiology (Webber 2012) and seismology (Garcia et al. 2013). The package 
nonlinearTseries includes tools for recurrence plotting and quantitative recurrence analysis 
(QRA), although they are quite computationally expensive (Garcia 2015). The R package 
fNonlinear includes a function for plotting recurrence plots too, but not for QRA (Wuertz et al. 
2017). The package crqa is devoted to cross-recurrence quantification analysis between two 
time-series of categorical or continuous values (Coco and Dale 2014). The fact that R and 
RStudio are manipulated mainly via code lines represents a barrier in many cases; because of 
this, R graphical interfaces are becoming more popular (for instance, RKWard, the Sciviews 
Virtual Box (Grosjean 2014) and the EPack Plugin, which provides RCommander with time 
series functionality (Fox and Bouchet-Valat 2017)).  

Aiming to expand the use of R to the study of microclimate data, we developed KarsTS 2.2, 
which is cross-platform, free software, available on the Comprehensive R Archive Network 
under the GPL (>= 2) license. It offers functions to analyze, fill, plot and manipulate linear and 
nonlinear time series, even if they are short. These tools make KarsTS a self-sufficient program, 
where the researcher can perform the entire process, including preprocessing, filling and 
analysis. Regarding gap filling, KarsTS includes a handful of univariate and multivariate 
methods. Some of them have been adapted and implemented from gap-filling techniques 
developed in the field of Ecology for CO2 flux time series (e.g., Falge et al. 2001a, 2001b; 
Dengel et al. 2013; Moffat et al. 2007; Zhao and Huang 2017). Graphics are also an essential 
part of KarsTS. In general, R graphics lack interactivity; however, KarsTS offers some interactive 
plots, where the user can select elements and perform different actions (zoom, remove points, 
get coordinates, etc.). Finally, regarding recurrence analysis, our goal was to favor calculation 
speed and efficient memory usage because microclimate time series can produce very large 
recurrence matrices. We aim to raise awareness of the nonlinear nature of many microclimatic 
time series, as well as to promote the use of consistent methodological tools even amongst 
scientist that do not feel comfortable using a console. 

In this paper, firstly we present an overview of KarsTS functionality. Then, we describe the data 
sets and outputs and the interface structure. Finally, in the application examples, we illustrate 
on observational cave time series the potential of some methods that have not been applied 
previously in this field.  

 

2. Design and Implementation 

2.1. Development aims 

KarsTS was born as an interface for filling gaps; however, soon it grew up to encompass a 
variety of tools for time series manipulation and analysis. Part of KarsTS functionality comes 
from contributed R packages, whilst other functions have been developed specifically for 
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KarsTS. One of the main goals guiding KarsTS development was to make it self-sufficient; in 
other words, the user does not need other software to complement KarsTS functionality. For 
this reason, we included many tools for time series preprocessing and plotting. Even though, it 
can be used in combination with the R console, which is useful also for regular R users because 
KarsTS contains functions that are not in other packages. 

KarsTS filling functionality is quite complete, both in terms of options and methods. The user 
can study the distribution of gaps (directly from time series, including time series with 
changing sampling frequency), study their nature (Little’s test), evaluate filling methods on 
artificial gaps and, finally, apply a filling method selectively on a subset of gaps. The program 
gathers a handful of univariate and multivariate methods that are effective on karst 
microclimate time series. Some filling methods were excluded either because they led to 
unsatisfactory results or because our time series did not meet their requirements. Similarly, 
we had to exclude many options for outlier detection; therefore we had to develop an 
interactive function for manual detection and a filter for points with anomalous slopes.  

We propose a filling method based on twin recurrent points, therefore, KarsTS needs to be 
equipped with recurrence tools, however, the utility of recurrence analysis goes much further 
as we superficially show in the application examples.  Our time series usually last few years, 
but their sampling frequency has to be quite high; this results in long time series in terms of 
number of points. Other R packages containing recurrence functions collapsed under such long 
time series, therefore KarsTS recurrence functions had to be implemented anew, considering 
carefully efficiency and memory usage.  

Many researchers in the field of karst microclimate feel uncomfortable using command lines; 
on another hand, nonlinear tools such as recurrence analysis are not widely known in this field 
despite their potential. Hence, this is a double barrier that can be difficult to overcome. KarsTS, 
having a graphical interface, is intended to lower that barrier and raise consciousness of the 
nonlinearity of most microclimate time series. In addition, KarsTS covers the methods 
commonly used in karst microclimate research (statistics, correlations, etc.), which is expected 
to encourage the users. In every function, the user is allowed to choose as many relevant 
inputs as possible. This might require an initial learning effort but it fosters KarsTS capability 
and flexibility, as well as the user’s awareness. Along these lines, we have provided very few 
optional, default inputs because they might encourage an irresponsible use of the software. 
KarsTS checks exhaustively the inputs entered by the user (class, range, compatibility, etc.) and 
throws explicative messages when they are inadequate. We have been meticulous to support 
the user and to avoid nonsensical results going undetected or collapsing the program.  

 

2.2. Functionality and methods 

In general, KarsTS functions can be divided in three layers. The core functions perform the 
calculations. Some of them have been developed for KarsTS whilst others come from other 
packages. Core functions are wrapped in a second layer of functions that verify exhaustively 
the inputs provided by the user and throw explicative messages when they are inadequate. All 
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the previous functions can be accessed directly from the R console, even when the interface is 
closed. The third layer includes the functions corresponding to the graphical interface.  

In the Supplementary material, table S.1 shows a complete list of KarsTS functionality and 
table S.2, the core functions inherited from other packages. Now we will describe briefly 
KarsTS functionality, highlighting the tools developed specifically for this program. We will also 
provide some theoretical background discretionarily. 

KarsTS functionality is divided in five menus. Two menus are devoted entirely to data set 
manipulation (time series and gap sets, respectively). Actions related to file manipulation 
(load, save, export, etc.) and those that require only elementary mathematical procedures are 
also located in these menus (for example, resampling, scaling, rounding, cumulative sum etc.).  

The user can select a set of gaps from a time series (diverse criteria are available) in order to 
apply later a filling technique only to that set of gaps (for example, spline interpolation only for 
gaps shorter than six missing values). Testing the suitability of the filling techniques to a 
particular time series is recommendable; to accomplish this, KarsTS allows the creation of 
artificial sets of gaps. The result can be tested visually or analytically, since KarsTS also contains 
a function to calculate the error between the imputed and the observed values.  

The Analysis menu is devoted to analytical procedures that produce non-graphical results, that 
is, new data sets and tables. It includes statistics, loess seasonal decomposition and 
smoothing, principal component analysis and tests for normality, stationarity and linearity, as 
well as tools for the analysis of recurrence. Recurrence is the return of the system to the same 
state after some time and its analysis can be useful to characterize various types of regimes 
from low-dimensional linear deterministic to nonlinear and stochastic-like dynamics. 

Recurrence analysis is based on the Theory of Dynamical Systems; therefore, the microclimate 
is conceived as a dynamical system, that is, a set of interrelated variables evolving through 
time. According to the Takens’ Theorem (Takens 1981), systems dynamics can be 
reconstructed by embedding the observed variables available (see 3.2.2 for an example). This 
is a powerful tool, since underground systems are difficult to access and they involve variables 
that cannot be measured. 

The fundamental tool for recurrence analysis are recurrence matrices, which are succinctly 
presented here (for a complete background, see Marwan et al. (2007). In section 3.2, we 
provide an example of creation and interpretation of a recurrence matrix (RM).  

Let xk be an embedded time series: 

xk є Rm, k=1,2,...N,         (1)                                       

where m is the embedding dimension.  

A RM can be defined as follows: 

RMi,j (ε) = Θ(ε − ||xi − xj||),  i, j = 1, . . . , N,        (2) 
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where ε is a threshold distance and Θ is the Heaviside function (Marwan et al. 2007). Thus, 
RMi,j (ε) equals zero when the distance between two points ( which characterizes the state of 
the system in the phase space) is greater than the threshold ε and it equals one otherwise. In 
other words, ones in RM express recurrence and zeros express lack of recurrence. QRA can 
provide some useful information such as the self repeating-rate (which is usually called 
determinism in literature) the predictability of the system, the presence of successive 
alternating states (laminarity) or the time that the system remains trapped in a certain state 
(trapping time). Recurrence analysis can be applied also to cross and joint (multivariate) 
recurrence matrices. 

Recurrence plots – located in the Plots menu – are the graphical counterpart of recurrence 
matrices. Values equal to one are plotted as points, whereas values equal to zero are not 
plotted. The points form patterns that give fast visual information about the dynamics of the 
system (Fig. 9).  

The maximum size of R objects is rather limited (4Gb in the best case), especially when 
working with Windows. This poses a problem to recurrence analysis because matrices based 
on microclimatic time series tend to be very large. Indeed, we could not reuse recurrence tools 
from other packages, instead we had to design more efficient functions to create and store 
recurrence matrices, cross-recurrence matrices, joint recurrence matrices, distance matrices 
and their respective plots. The matrices are stored in a specific sparse format, which conditions 
the performing of the quantitative recurrence analysis (QRA), therefore tools for QRA from 
other packages cannot be used on KarsTS recurrence matrices. Following the same criterion of 
efficiency, KarsTS includes tools for estimating the recurrence rate, determinism or self-
repeating rate, laminarity and recurrence probability.  

The Plots menu also contains tools for plotting time series, phase portraits and distance 
matrices. Optionally, the user can customize the graphics to a great extent: colors, line width, 
point size, labels, pixel size etc. Some of the plots are interactive. Interactive plots provide 
KarsTS with essential functionality; besides zooming plot sections, the user can get point 
coordinates and graphically remove points. The latter tool is quite useful to eliminate outliers 
manually because automatic removal of outliers is seldom possible since our time series are 
often nonlinear and non-stationary. The outliers are usually due to malfunctions of the 
measuring devices and they can be detected visually with ease, though (see section 3.2.2 for 
an example).     

The Plots menu contains other graphics, such as histograms, false nearest neighbors and tools 
for analyzing time series correlation (linear correlation, average mutual information and cross 
recurrence probability).  

Finally, the fifth menu is devoted to filling methods. The upper row contains univariate 
methods. It includes different types of interpolation coming from the zoo and stinepack 
packages. Interpolation is a good choice for small gaps (smaller than the time series period), 
but it fails to reproduce periodical or quasi-periodical behavior. Aiming to expand the 
usefulness of interpolation to longer gaps, we have included an additional feature that allows 
to perform the interpolation taking on account the position of the value inside the period (we 
will refer to it as position-wise interpolation). For instance, let be a time series with 
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measurements every 60 minutes and a periodicity of one day and a missing value 
corresponding to 12:00h. If this option is selected, only the values measured at 12:00h will be 
taken on account to perform the interpolation. This feature is very useful when the gaps are 
longer than half a period (in this example, gaps of 12 missing values or more). 

The position-wise mean value (PwMV), specifically implemented for KarsTS, is inspired by the 
Mean Diurnal Variation, a gap-filling method used for Eddy CO2 fluxes (Moffat et al. 2007). In 
the PwMV, a missing value is replaced by the mean of the values located in analogous 
positions in the periods surrounding the gap; the length of the period is defined by the user 
and, thus, not limited to daily variations. Along the same line, KarsTS includes position-wise 
interpolations. Gaps can also be filled by fitting an ARIMA model to the data. Optionally, 
KarsTS can suggest the ARIMA parameters using internally the auto.arima function, which 
eases significantly the process. The lower row offers multivariate filling methods, which are 
useful when other time series provide information for filling the incomplete one. These 
methods include ARIMAX models, generalized additive models and a random forest algorithm 
from the missForest package. Finally, the Twins method combines the Look Up Table 
methodology (used in Ecology, see Moffat et al. (2007)) with an original recurrence analysis 
approach. Let {Xi,j} be a multivariate time series of length N with M variables m1,m2,…mM, 
where Xi,j the i-th value of the variable mj is missing.  The LUT methodology consists of finding 
points where the non-missing variables m1,m2,…,mj-1,mj+1,…,mM take equal or very similar  
values to (Xi,1, Xi,2, … ,Xi,j-1, Xj+1, …, Xi,M). We propose to define this similarity taken on account 
that these points are points of a dynamical system. Some methods to fill missing values using 
the Theory of Dynamical Systems have been proposed (Amritkar and Kumar 1995; Zhao et al. 
2009); however, these methods are recursive and their errors grow very fast for observational 
time series.  Our method is not recursive, since the missing values are filled considering the 
values of the non-missing variables. Moreover, it allows using embedded variables, thus taking 
advantage of the principle of embedding, which allows the reconstruction of dynamical 
systems when one or more variables are missing. In this filling method, we consider two points 
to be equivalent when they are twins. Twin points are points that produce identical columns in 
the recurrence matrix (this implies that they are so close in phase space that they share the 
same neighborhood of points). 

 

2.3. Data sets and outputs 

The user can handle three types of data sets: univariate time series, recurrence matrices and 
gap sets. Time series are data frames having the time in date format in the first column and 
the values in the second column. Gap sets and recurrence matrices are lists. A gap set is a 
collection of missing values, given by their positions in a time series; the list contains additional 
information about the original time series (name, length, start date, etc.). Recurrence matrices 
are sparse matrices containing only the positions of the ones, as well as additional information 
(embedding dimension, delay etc.). During the KarsTS session, data sets are located in the 
environment KTSEnv, which is accessible from the R console. This enables the combined use of 
KarsTS and R. KarsTS data sets have very specific structures and KarsTS will only recognize data 
sets that match exactly those structures; therefore, users must be careful when modifying 
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them by means of the R-console. Despite this, these strict data set formats are desirable 
because they allow verifying the appropriateness of the inputs exhaustively.  

KarsTS data sets can be imported from or exported to csv or txt files. Initially, the researcher’s 
time series are usually in a csv or txt file; in contrast, gap sets and recurrence matrices are 
typically created with KarsTS. Saving the data to R files allows storing multiple data sets in the 
same file and eliminates any compatibility problem. KarsTS rejects incorrect files; for example, 
time series with dates in the wrong order. Nonetheless, time jumps and different sampling 
periods are accepted; KarsTS processes the time series in order that internally their sampling 
period is constant. 

 

2.4. Interface structure 

KarsTS interface consists of a welcome window, the main window and independent additional 
windows for plots and warning messages. The main window is divided in four parts (Fig. 1), 
which will be described briefly from the bottom to the top. The lower space contains four 
buttons which serve the following purposes: i) set the working directory; ii) create a txt file 
with the contents of the output window; iii) open a short help document (for further 
information, the user can check the KarsTS User’s Guide) and iv) open a file with information 
about KarsTS current version.  

Over the space containing these four buttons, the input panel (IP) lies on the left side and the 
output window (OW), on the right. Non-graphical results such as tables appear on the output 
window; the user can write, copy, paste and delete since the window is editable. As we have 
already mentioned, the OW contents can be saved to a txt file. 

The uppermost row hosts five menu-buttons, namely, Time Series, Gap Sets, Analysis, Plots 
and Filling. As we mentioned in section 2.2, the first two menus are devoted to preprocessing; 
the third and fourth, to analysis and the last one, to missing data imputation. When a menu-
button is pressed, the buttons corresponding to that menu are displayed in the rows below. 
Each menu-button has a distinctive color, which is shared by its buttons (although the buttons 
color is a tone lighter). Every function needs specific inputs, therefore when the user presses a 
button, the input panel changes accordingly. 

Graphical outputs appear on new windows. From these windows the user can copy the plot to 
the clipboard or save it to a png or tiff file (Fig. 2a). In some cases, it is also possible to select a 
section of the plot and zoom it; the zoomed section appears on another window (Fig. 2b).  

 

3. Illustrative examples 

To illustrate the potential of KarsTS, in this section we provide examples of pre-processing, gap 
filling and recurrence analysis based on a data set gathered under real observational 
conditions in the Rull cave (Alicante, Spain) from 11-22-2012 to 10-28-2016. We will consider 
the outside temperature, which was recorded every 30 minutes with an independent data 
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logger (Onset, Bourne, MA, USA), and the inside temperature, measured with a HygroClip S3 
sensor (for further details about the monitoring, see Pla et al., 2017). The natural gaseous 
dynamic of this cave is characterized by two different stages. The temperature difference 
between the outside and the inside controls the ventilation processes, which cause the CO2 
and 222Rn concentration to reach their lowest values in the coldest months. The cave 
temperature variations are negligible in comparison to the outside temperature ones. By 
contrast, in summer, ventilation is blocked and diffusion processes recharge the cave with soil-
produced CO2; the outside temperature is also an essential control for the soil CO2 production 
and, of course, for the cave temperature itself (Pla et al. 2016, 2017, 2017b, García-Antón et al. 
2017). In summary, the outside temperature is the most important control for the cave 
microclimate.  

 

3.1. Gap filling example 

In order to show the application of some filling techniques, we select a fragment of the outside 
temperature (Fig.3). Then we create artificial gaps of varied sizes (button Artificial random 

gaps), as shown in Table 1. In all cases, the total number of missing values in the time series is 
576 (10% of the fragment length).  

For comparison, the time series are filled using all KarsTS univariate filling techniques: spline 
and Stinemann’s interpolations, position-wise spline and Stinemann’s interpolations, ARIMA 
model and position-wise mean-value. The ARIMA parameters are estimated automatically, 
being the result (2,0,0)x(1,1,0). For the position-wise mean value we use, in general, a number 
of observations equal to twice the size of the gap; however, for gaps shorter than one period 
we take 96 observations (48 at right and 48 at left).  

Table 2 shows the mean absolute error for each method (button Check filling). The 
interpolation error for the Spline interpolation and gaps of 12h is 2.124ºC; however, the error 
grows fast as the length of the gaps is increased (for example, 35.770 ºC for 6 days gaps). The 
Stinemann’s interpolation error is somewhat smaller for 12h gaps (1.948ºC) and its behavior 
for long gaps is slightly more stable. The position-wise interpolations (columns Pw-Splines and 
Pw-Stinemann) and the position-wise mean value (Pw-MV) entail a significant improvement. In 
these cases, the relationship between the gap length and the error magnitude is not 
systematical; however, the errors are of the same order for gaps up to 6 days (between 1.116 
and 2.462ºC). The results for the ARIMA model are also of the same order, however, this 
method requires much more computation time. In conclusion, Table 2 shows that the position-
wise Stinemann’s interpolation offers the best results in this case. The position-wise spline 
interpolation would be a good choice too; indeed, we have sometimes observed a better 
behavior of the spline method over the Stinemann’s one when the research requires to 
differentiate the time series (probably the spline interpolation is best to ensure smoothness).  

3.2. Recurrence analysis of the temperature 

In this example, we construct and interpret a RM from the time series of the difference 
between the outside and the inside temperature, which is the main control for ventilation.  
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3.2.1. Preprocessing 

The sampling period is always 30 minutes and the first and last dates of both time series 
coincide. The time series of the outside temperature (Fig. 4a) has only nine missing values, 
therefore any filling method is suitable. However, the time series of the inside temperature 
(Fig. 5) has several long gaps. In addition, it contains many outliers, which are caused by 
malfunctions of the equipment. We clean the time series manually using the Remove points 
button (Fig. 5).  

Next, we smooth the time series to remove noise and very high frequencies (button Loess 

smooth.). We have to choose the parameter alpha, which controls the degree of smoothing; in 
this case, alpha = 0.015 for both time series (the smoothed time series are not shown). For 
each point in the time series, the loess smoothing performs a local fitting in a neighborhood 
around the point; alpha indicates the length of this neighborhood as proportion to the total 
length of the time series (1435 days). Therefore, in this case the neighborhood includes 1435 
*0.015≈21.5 days. This window is enough to eliminate noise and high frequency oscillations (of 
few days) from both the CO2 and the 222Rn time series.  After smoothing, the cave temperature 
shorter periodicity is one year. Therefore we can now interpolate both time series with splines. 

Finally, we subtract the inner temperature from the outside one (button Operations) in order 
to get the smoothed centered temperature (Fig. 4b, blue line). For the sake of simplicity, we 
rename the time series to cT.Sm, where Sm stands for smooth. 

cT.Sm is too long for a recurrence analysis: 68 880 values. The corresponding RM would have 2 
372 192 760 elements in each triangle. Even if KarsTS stores it as a sparse matrix, it would 
likely exceed R capacity of allocation. Therefore, we resample the time series (button Cut and 

Resampling) to get a time series with one value every 6h: cT.Sm.6h (not shown in any figure).  

3.2.2. Estimation of the embedding parameters 

Embedding is not strictly necessary to calculate recurrence matrices because the unembedded 
matrix contains, in principle, all the information (March et al. 2005); however, it is useful since 
it unfolds the dynamical information included in the original signal, and it facilitates the 
interpretation of the recurrence plots. Therefore, choosing the embedding dimension (d), 
delay (t) and threshold (e) is a necessary step of recurrence analysis. 

The most usual method to estimate the delay is to take the first minimum of the delayed 
average mutual information, AMI (Abarbanel et al. 1993) (button Mutual). It is also usual to 
take the first change of slope if there is no minimum. Note that embedding the time series 
causes a shortening equal to (m – 1) × t; therefore, a distant minimum can lead to an 
unacceptable shortening in practice. Embedding also propagates gaps, which can be another 
drawback when m or t are large.  

Figure 6 shows the AMI plot for cT.Sm.6h; clearly, the AMI has a minimum at lag = 360, that is, 
90 days. However, this delay is probably too long considering the shortness of the time series. 
There is also a change of slope at 16 lags (4 days), approximately, which is likely a more 
feasible option. We have to consider, also, that the delay of 90 days will highlight the annual 
structures and the other will highlight the structures related to the intermediate time scales.  



12 

The next step is to estimate the embedding dimension, d. This is usually done using the false 
nearest neighbors method (Kennel et al. 1992) (button FNN). False neighbors are points in the 
embedding space that are close when the trajectory is compressed, but they separate when 
the system is conveniently unfolded, which happens when the embedding dimension is large 
enough. Figure 7 shows the FNN plot for the centered temperature time series. When the 
embedding dimension is around 5, the percent of false nearest neighbors becomes stable. For 
smaller dimension, the embedding is not ensured. For larger values, additional dimensions do 
not enable to unfold anymore information (see Letellier et al. (2008) for a discussion) and they 
might lead to spurious effects. 

At this point, we have estimated the embedding dimension and the delay; now we have to 
estimate the threshold (e). KarsTS offers functions to estimate it analytically (Invariants and 
Ed(1) and Ed(2), see Supplementary material, table S.1), but they require longer time series. In 
this case, we will use distance plots (also known as unthresholded recurrence plots), which 
represent the distance between each pair of points by means of a color scale. We simply 
choose the threshold that visually produces clearer structures, in this case, short diagonal lines 
(Fig. 8). The user can apply the color scale to a range of distances; for example, we used 
progressively smaller distance ranges in order to refine the threshold: 0 – 15, 0 – 7 and 0 – 4 
0C. From Fig. 8, we can estimate the threshold as 2 0C, although 1 0C seems to be a better 
choice in summer.  

Distance plots provide good visualization, however, they cannot be used for QRA; for this 
reason, a RM is also needed (Fig. 9). 

3.2.3. Temperature dynamics 

Recurrence analysis of the centered temperature behavior is interpreted as a combination of 
deterministic chaos and laminarity at multiple scales. The large scale diagonal structures 
indicate that there is underlying determinism; however, rather than diagonal lines, they are 
succesions of square structures, which is a sign of laminarity. On the small scale, there are also 
diagonal and vertical structures that can be observed in Figure 8 (distance plot) or Figure 9 
(recurrence plot). The plot forms a chess-like structure. In winter, there are large square 
structures filled with short diagonal lines (magenta in Figure 8 and brown in Figure 9, see 
example A). The fact that these structures are squared (not rhomboidal) evinces that the 
outside temperature surpasses and drops below the cave temperature very abruptly in 
comparison with the annual scale. The short diagonal lines inside correspond to temperature 
oscillations within the winter (Figs. 8 and 9, see example B). In summer, there are also squared 
structures filled with short diagonal lines, but they are smaller (magenta in Figure 8 and brown 
in Figure 9, example C). The diagonal lines in winter are more separated than they are in 
summer. This implies that the period of the temperature oscillations in winter is larger. As 
mentioned in section 3.3.2, the optimum threshold for the recurrence matrices seems to be 2 
°C in winter and 1 °C in summer. Between the small summer and the large winter squares, 
there are more small squares. They correspond to sudden temperature changes followed by 
periods of stability. In other words, the temperature rises in few steps and reaches its 
maximum around July; then, it descends also in steps. After that, it enters the winter 
dynamics.   
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The outside temperature (Fig. 4a) and the centered temperature (Fig. 4b) time series have 
practically the same shape because the inner temperature is almost constant; as a 
consequence both temperatures would produce virtually identical recurrence matrices. The 
diagonal lines in the RM (Fig. 9) are discontinuous. This means that the centered temperature 
behaviour, although probably deterministic, cannot be predicted in the long term, which is 
characteristic of chaos.  

We have estimated the recurrence rate, self-repeating rate and laminarity. The minimum self-
repeating rate and laminarity were set to one day, which means that we consider the lines 
under this minimum length as noise.  

The laminarity is very high in all cases (99%), which means that abrupt alternations are 
detected quite well. The self-repeating rate is (49%).  This means that, approximately half of 
the times, the recurrence involves not only punctual states, but also the time evolution of the 
system during one day or more. The temperature predictability (mean of the recurrence 
diagonal lines lengths) is 8.46 days. Finally, the trapping time (mean of the recurrence vertical 
lines) is 7.67 days, which means that, on an average, the temperature remains stable for this 
time span before it changes. 

The change between isolation (accumulation of CO2 and 222Rn) and ventilation is probably the 
most relevant factor when studying the gaseous dynamics of a cave. The Rull cave remains 
isolated from the outside’s when the outside temperature is higher than the inner one 
(because the cave colder air remains trapped); in other words the change between isolation 
and ventilation must happen approximately when the centered temperature is close to zero or 
somewhat later. As we have shown in this paper, the outside temperature shows a strong 
degree of laminarity with stable states separated by abrupt temperature changes. This implies 
that the switch between isolation and ventilation is very sudden and therefore, it might be a 
delicate matter. Hence, we recommend studying the synchronization between gas 
concentration and temperature by means of recurrence matrices, which are able to deal with 
laminar and mixed behaviors. This is, however, out of the scope of this paper, where we have 
presented only one variable, the outside temperature. This variable is the main driver for the 
gaseous interchange with the outside atmosphere (since the inner temperature is practically 
constant) and its effect over the cave gas concentration is rather fast. Therefore, the cave 
atmospheric composition is expected to show a similar behavior in terms of recurrence, 
predictability and trapping time.  

 

4. Conclusions 

We have developed KarsTS, an R-based, multiplatform package for microclimate time series 
with an emphasis on underground environments. It offers several tools for analysis, 
preprocessing and plotting, since we aspire to include everything the user needs to go through 
the entire characterization process. The functions and data sets can be handled via interface or 
via the R console.  
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Underground microclimate time series are the expression of real-world, complex, often 
nonlinear, processes, which is frequently overlooked. Hence, we aim to spread the use of 
appropriate methodological tools. KarsTS provides nonlinear tools including recurrence 
analysis since this technique is well adapted to observational time series, possibly nonlinear, 
noisy, short or incomplete. Recurrence analysis works on dynamical systems reconstructed by 
embedding; the possibility of reconstructing the system based on the variables available is also 
convenient because the monitoring of these environments is often difficult.  

KarsTS also offers a handful of univariate and multivariate filling methods adapted from other 
fields of research and the possibility of applying them to different subsets of gaps within linear 
or nonlinear time series such as temperature and CO2 or 222Rn concentrations. 

In this paper, we showed some application examples on four-year temperature time series 
from the Rull cave. On one hand, KarsTS univariate filling techniques were tested for different 
gap sizes; the better suited technique turned out to be the position-wise Stineman’s 
interpolation. On another hand, we created and interpreted a RM based on the temperature 
difference between the outside and the inside, which is the main control for the cave 
microclimate and air composition. We found that the regime is strongly laminar and its 
predictability is approximately 8.5 days. The examples also included the pre-processing of the 
time series.  
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Availability and Requirements  

Program title: KarsTS 2.2 

Developer: Marina Sáez (email: marinasaez_andreu@hotmail.com) 

Available from: https://cran.r-project.org/web/packages/KarsTS/index.html 

Licensing provisions: GNU General Public License 2 

Programming language: R (>= 3.4.0) 

Software: minimum, Windows 7 or Mac OS v.10.11 . R (>= 3.4.0) and R Studio (>= 1.1.383). 

Running time: Interactive 
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Figure captions 

Figure 1. KarsTS main window. At the top, the time series menu is displayed; at left, the input panel 
corresponding to the Load button and at right, the output window. 

 

Figure 2. a) Plot containing two time series currently under consideration; the section in green has been 
selected using the mouse. b) Zoom of a section of the time series. The zoomed sections can be turned 
into new time series using the button Create ts. 

 

Figure 3. Fragment of the outside temperature time series (ºC) from June, 2013 to September, 2013. 

 

Figure 4. a) Outside temperature (red) and inside temperature (blue) time series (ºC) b) Centered 
temperature (red) and smoothed centered temperature (blue) time series (ºC).   

 

Figure 5. Cave temperature (°C) before (in red) and after (in black) removing outliers with the Remove 
points button.  

 

Figure 6. Delayed average mutual information (AMI) as a function of delay time of the centered 
temperature (nats). 

 

Figure 7. False nearest neighbors plots for cT.Sm.6h (τ = 16). 

 

Figure 8. Centered temperature distance plot (τ = 4 days; d = 5). A, B and C exemplify some essential 
structures (explained in section 3.2.3.).  

 

Figure 9: Centered temperature RM (d = 5; τ = 4 days; r = 2ºC; Theiler’s window = 2 days). A, B and C 
exemplify some essential structures (explained in section 3.2.3.).  
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Software Files 

Program title: KarsTS 2.2 

Available from: https://cran.r-project.org/web/packages/KarsTS/index.html 



Table 1: set of time series with artificial gaps to test different filling methods. Note that the 
time series is sampled every 30 minutes, therefore every cycle (day) contains 48 observations. 

Time series name Number of gaps Missing values per gap Gap length (days) 
T.outside.1_24 24 24 0.5 
T.outside.1_48 12 48 1 
T.outside.1_96 6 96 2 
T.outside.1_288 2 288 6 
T.outside.1_576 1 576 12 
 

 



 

Table 2: Mean absolute error (ºC) of the observed versus imputed temperature values for 
different univariate filling techniques. Splines and Stinemann stand for Spline and Stinemann 
interpolations, respectively; Pw-Splines and Pw-Stinemann stand for position-wise spline and 
Stinemann’s interpolation, Pw-MV stands for Position-wise mean value (see Suppl Mat 1,Table 
S.1) 

Gap length 
(days) 

Splines Stinemann Pw-Splines Pw-Stinemann Pw-MV ARIMA 

0.5 2.124 1.948 2.068 1.615 1.635 1.821 
1 4.385 4.516 1.316 1.120 1.116 1.342 
2 6.729 4.445 2.017 1.600 1.781 1.785 
6 35.770 4.842 2.171 1.321 2.462 1.301 
12 13.239 7.004 3.211 2.100 2.995 2.377 
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Supplementary material: 

KarsTS: An R package for microclimate time series analysis 

M. Sáez, C. Pla, S. Cuezva, D. Benavente 

 

 

Table S.1. KarsTS functionality overview. TS =time series, GS = gap set, RM = recurrence matrix, O = 
others. 

Menu Button Function Input types Output types 
Time series Load Loads .R files and imports .csv or .txt files File TS, GS, RM 
 Remove Removes data sets from the interface TS, GS, RM  
 Save Saves data sets to the working directory TS, GS, RM, O  
 Export Saves data sets to the working directory in csv or txt format TS, GS, RM, O  
 Rename Duplicates data sets and assigns new names TS, GS, RM, O TS, GS, RM 
 Merge Merges gap sets or consecutive time series TS, GS, O TS, GS 
 List Shows a list of loaded data sets  on the output window None Text on OW 
 Sampling periods Shows a table of sampling periods and gaps TS, O Table on OW 
 Aggregate Aggregates a time series into hourly, daily, ... values TS, O TS 
 Cut & resample Cuts or resamples a time series or both TS, O TS 
 Operations Sum, multiplication, natural logarithm, opposite, reciprocal TS, O TS 
 Round Rounds to a number of significant digits or decimal places TS, O TS 
 Scale Scaling TS TS 
 Differences Differences at the required lag TS, O TS 
 Cumulative sum Cumulative sum TS, O TS 
Gap sets Load ... List See Time Series menu   
 Gap selection Create a subset from the existing gaps in a time series TS, O GS 
 Artificial random gaps Create random artificial gaps in a TS TS, O TS, GS 
 Artificial specific gaps Create a gap ranging between two dates TS, O TS, GS 
 Apply gaps to series Apply a gap set to a time series TS, GS TS 
 Little’s MCAR test Little’s test for missing completely at random data TS Text on OW 
Analysis  Statistics Univariate statistics TS Table on OW 
 Rolling statistics Rolling statistics TS, O TS 
 Loess decomp. Loess seasonal decomposition TS, O TS 
 Loess smooth. Loess smoothing TS, O TS 
 Normality Univariate and multivariate normality tests TS Text on OW 
 Stationarity Stationarity tests TS Text on OW 
 Linearity Linearity tests TS Text on OW 
 PCA Principal component analysis TS TS, Text on OW 
 Mutual info Gets mutual information between two time series TS, O TS, Text on OW 
 Invariants Correlation sum, correlation dimension and sample entropy TS, O Table on OW, Plots 
 Rec. matrix Creates a RM TS, O RM 
 Cross rec. matrix Creates a CRM TS, O RM 
 Joint rec. matrix  Creates a JRM RM RM 
 Determinism  Recurrence rate, determinism, ratio and summary of diagonal line lengths. RM, O Text, table on OW 
 Laminarity Recurrence rate, laminarity, ratio and summary of vertical line lengths. RM, O Text, table on OW 
 Theiler’s window Applies a Theiler’s window to a RM RM RM 
Plots Plot ts Plots one or more TS. Select and zoom. Create TS from selected fragment. TS, O Plot 
 Remove points Remove points from TS interactively  TS, O TS 
 Get coordinates Shows index, date and value of the selected points TS Text on OW 
 Linear correlation Acf and pacf, or ccf plots TS, O Plot 
 AMI Delayed average mutual information plots TS, O Plot 
 Wind rose Wind rose for directional data TS, O Plot 
 Histogram Histogram TS, O Plot 
 Phase portraits  Scatter plots and embedded phase portraits (2D or 3D) TS, O Plot 
 FNN  Embedding dimension vs false neighbors (%) plot TS, O Plot 
 E1(d) and E2(d) E1(d) and E2(d) TS, O Plot 
 Recurrence plot Recurrence plot or joint recurrence plot RM Plot 
 Cross recurrence plot Cross recurrence plot RM Plot 
 Distance plot Unthresholded recurrence plot TS, O Plot 
 RP Probability of recurrence and Cross probability of recurrence RM Plot, text on OW 



 

Filling Stinemann’s  Filling by Stinemann’s interpolation. Univariate. TS, (GS) TS, Text on OW 
 Linear  Filling by Linear interpolation. Univariate. TS, (GS) TS, Text on OW 
 Splines  Filling by Splines interpolation. Univariate. TS, (GS) TS, Text on OW 
 ARIMA Filling by ARIMA with Kalman smoother. Univariate. TS, (GS), O TS, Text on OW 
 Mean value Uses the values in neighbor periods to fill the missing one. Univariate. TS, (GS), O TS, Text on OW 
 Multiv. Splines Fills missing values using a generalized additive model. Multivariate. TS, (GS), O TS, Text on OW 
 Missforest Fills missing values using random forest algorithm. Multivariate. TS, (GS), O TS, Text on OW 
 Twins Fills missing values using twin points in a RM RM, (GS), O TS, Text on OW 
 ARIMAX Filling by ARIMA with Kalman smoother. Multivariate. TS, (GS), O TS, Text on OW 
 Rm. Slope Outliers Removes outliers causing abnormally high slopes. TS, (GS), O TS 
 Check filling Checks observed vs predicted values (artificial gaps) TS, (GS), O Plots,Text on OW 

 



Table S.2. Core functions from other R packages. 

 Function Package Description 

Statistical tests adf.test tseries Augmented Dickey-Fuller test 

Box.test stats Box-Pierce test 

hzTest MVN Normality test 

kpss.test tseries Kwiatkowski-Phillips-Schmidt-Shin test 

LittleMCAR BaylorEdPsych Little’s MCAR test 

mardiaTest MVN Normality test 

nonlinearityTest nonlinearTseries Various non linearity tests 

PP.test stats Phillips-Perron Test for Unit Roots 

surrogateTest nonlinearTseries Surrogates test 

uniNorm MVN Normality tests 

NA imputation auto.arima, Arima forecast ARIMA model 

missForest missForest Forest tree algorithm to fill missing values 

na.spline, na.approx zoo Spline and linear interpolations 

na.stinterp stinepack  Stinemann’s interpolation 

Visualization hist graphics Histogram 

windrose circular Wind rose 

Preprocessing loess stats Loess smoothing 

stlplus stlplus Loess decomposition 

Recurrence 
analysis 

corrDim nonlinearTseries Correlation dimension 

estimateEmbeddingDim nonlinearTseries E1(d) and E2(d) 

false.nearest tseriesChaos False nearest neighbors 

mutual tseriesChaos Delayed mutual information 

Mutual 
information 

discretize infotheo Discretization 

mutinformation infotheo Mutual information 

Other prcomp stats Principal component analysis 

acf, pacf, ccf stats Linear correlations 

 


