Sevilla Solís, Marta, Salinas Martínez de Lecea, Concepción, Valdés-Solís Iglesias, Teresa, Morallon, Emilia, Fuertes Arias, Antonio Benito Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports SEVILLA SOLÍS, Marta, et al. “Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports”. Physical Chemistry Chemical Physics. Vol. 10, Issue 10 (2008). ISSN 1463-9076, pp. 1433-1442 URI: http://hdl.handle.net/10045/10478 DOI: 10.1039/b714924g ISSN: 1463-9076 (Print) Abstract: We present a novel and facile synthesis methodology for obtaining graphitic carbon structures from Fe(II) and Co(II) gluconates. The formation of graphitic carbon can be carried out in only one step by means of heat treatment of these organic salts at a temperature of 900 °C or 1000 °C under inert atmosphere. This process consists of the following steps: (a) pyrolysis of the organic gluconate and its transformation to amorphous carbon, (b) conversion of Fe2+ and Co2+ ions to Fe2O3 and CoO and their subsequent reduction to metallic nanoparticles by the carbon and (c) conversion of a fraction of formed amorphous carbon to graphitic structures by Fe and Co nanoparticles that act as catalysts in the graphitization process. The removal of the amorphous carbon and metallic nanoparticles by means of oxidative treatment (KMnO4 in an acid solution) allows graphitic carbon nanostructures (GCNs) to be selectively recovered. The GCNs thus obtained (i.e. nanocapsules and nanopipes) have a high crystallinity as evidenced by TEM/SAED, XRD and Raman analysis. In addition, we used these GCNs as supports for platinum nanoparticles, which were well dispersed (mean Pt size ~2.5–3.2 nm). Most electrocatalysts prepared in this way have a high electrocatalytical surface area, up to 90 m2 g-1 Pt, and exhibit high catalytic activities toward methanol electrooxidation. Keywords:Carbon materials, Electrocatalysts, Fuel cells Royal Society of Chemistry info:eu-repo/semantics/article