Electron enrichment of zigzag edges of armchair–oriented graphene nano–ribbons increases their stability and induces pinning of Fermi level

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/95409
Información del item - Informació de l'item - Item information
Title: Electron enrichment of zigzag edges of armchair–oriented graphene nano–ribbons increases their stability and induces pinning of Fermi level
Authors: Louis, Enrique | San-Fabián, Emilio | Chiappe, Guillermo | Vergés Brotons, José Antonio
Research Group/s: Física de la Materia Condensada | Materiales Avanzados | Química Cuántica
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada | Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Electron enrichment | Zigzag edges | Armchair-oriented | Graphene nano-ribbons | Fermi level
Knowledge Area: Física de la Materia Condensada | Química Física | Física Aplicada
Issue Date: Dec-2019
Publisher: Elsevier
Citation: Carbon. 2019, 154: 211-218. doi:10.1016/j.carbon.2019.07.102
Abstract: Zigzag edges of neutral armchair–oriented Graphene Nano–Ribbons show states strongly localized at those edges. They behave as free radicals that can capture electrons during processing, increasing ribbon's stability. Thus, charging and its consequences should be investigated. Total energy calculations of finite ribbons using spin–polarized Density Functional Theory (DFT) show that ribbon's charging is feasible. Energies for Pariser-Parr-Pople (PPP) model Hamiltonian are compatible with DFT allowing the study of larger systems. Results for neutral ribbons indicate: i) the fundamental gap of spin–polarized (non–polarized) solutions is larger (smaller) than experimental data, ii) the ground state is spin–polarized, a characteristic still not observed experimentally. Total energy of GNRs decreases with the number of captured electrons reaching a minimum for a number that mainly depends on zigzag–edges size. The following changes with respect to neutral GNRs are noted: i) the ground state is not spin–polarized, ii) fundamental gap is in-between that of spin–polarized and non–polarized solutions of neutral ribbons, iii) while in neutral ribbons valence and conduction band onsets vs. the fundamental gap, linearly and symmetrically approach mid–gap with slope 0.5, charging induces Fermi level pinning, i.e., the slopes of the valence and conduction bands being about 0.1 and 0.9, in agreement with experiment.
Sponsor: This work has been Partial financial support by the Spanish “Ministerio de Ciencia, Innovación y Universidades” (Grants FIS2015-64222-C2-1-P, FIS2015-64222-C2-2-P, MAT2016-77742-C2-2-P and AYA2015-66899-C2-2-P), and the Universidad de Alicante is gratefully acknowledged.
URI: http://hdl.handle.net/10045/95409
ISSN: 0008-6223 (Print) | 1873-3891 (Online)
DOI: 10.1016/j.carbon.2019.07.102
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2019 Elsevier Ltd.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.carbon.2019.07.102
Appears in Collections:INV - LMA - Artículos de Revistas
INV - Física de la Materia Condensada - Artículos de Revistas
INV - QC - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Louis_etal_Carbon_final.pdfVersión final (acceso restringido)2,7 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Louis_etal_Carbon_preprint.pdfPreprint (acceso abierto)1,55 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.