Interplay between interlayer exchange and stacking in CrI3 bilayers

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/94067
Información del item - Informació de l'item - Item information
Título: Interplay between interlayer exchange and stacking in CrI3 bilayers
Autor/es: Soriano, David | Cardoso, Claudia | Fernández-Rossier, Joaquín
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Interplay | Interlayer exchange | Stacking | CrI3 bilayers
Área/s de conocimiento: Física de la Materia Condensada
Fecha de publicación: sep-2019
Editor: Elsevier
Cita bibliográfica: Solid State Communications. 2019, 299: 113662. doi:10.1016/j.ssc.2019.113662
Resumen: We address the interplay between stacking and interlayer exchange for ferromagnetically ordered CrI3, both for bilayers and bulk. Whereas bulk CrI3 is ferromagnetic, both magneto-optical and transport experiments show that interlayer exchange for CrI3 bilayers is antiferromagnetic. Bulk CrI3 is known to assume two crystal structures, rhombohedral and monoclinic, that differ mostly in the stacking between monolayers. Below 210–220 K, bulk CrI3 orders in a rhombohedral phase. Our density functional theory calculations show a very strong dependence of interlayer exchange and stacking. Specifically, the ground states of both bulk and free-standing CrI3 bilayers are ferromagnetic for the rhombohedral phase. In contrast, the energy difference between both configurations is more than one order of magnitude smaller for the monoclinic phase, and eventually becomes antiferromagnetic when either positive strain or on-site Hubbard interactions (U ≥ 3) are considered. We also explore the interplay between interlayer hybridization and stacking, using a Wannier basis, and between interlayer hybridization and relative magnetic alignment for CrI3 bilayers, that helps to account for the very large tunnel magnetoresistance observed in recent experiments.
Patrocinador/es: DS thanks NanoTRAINforGrowth Cofund program at INL and the financial support from EU through the MSCA Individual Fellowship program at Radboud Universiteit (Project Nr. 796795). J. F.-R. acknowledge financial support from FCT for the P2020-PTDC/FISNAN/4662/2014, the P2020-PTDC/FIS-NAN/3668/2014 and the UTAPEXPL/NTec/0046/2017 projects, as well as Generalitat Valenciana funding Prometeo2017/139 and MINECO Spain (Grant No. MAT2016-78625-C2). CC and JFR acknowledge FEDER project NORTE-01-0145-FEDER-000019.
URI: http://hdl.handle.net/10045/94067
ISSN: 0038-1098 (Print) | 1879-2766 (Online)
DOI: 10.1016/j.ssc.2019.113662
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2019 Published by Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.ssc.2019.113662
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Soriano_etal_SolidStateCommun_final.pdfVersión final (acceso restringido)3,65 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2019_Soriano_etal_SolidStateCommun_preprint.pdfPreprint (acceso abierto)4,95 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.