Small Solar System Bodies as granular media

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/93960
Información del item - Informació de l'item - Item information
Título: Small Solar System Bodies as granular media
Autor/es: Hestroffer, Daniel | Sánchez, Paul | Staron, Lydie | Campo Bagatin, Adriano | Eggl, Siegfried | Losert, Wolfgang | Murdoch, Naomi | Opsomer, Eric | Radjai, Fahrang | Richardson, Derek C. | Salazar, Marcos | Scheeres, Daniel J. | Schwartz, Stephen R. | Taberlet, Nicolas | Yano, Hajime
Grupo/s de investigación o GITE: Astronomía y Astrofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Palabras clave: Small bodies of the Solar System SSSB, minor planets, asteroids: general | Gravitational aggregates | Granular media | Methods: numerical, laboratory, observational | Planetary formation
Área/s de conocimiento: Física Aplicada
Fecha de publicación: dic-2019
Editor: Springer Berlin Heidelberg
Cita bibliográfica: The Astronomy and Astrophysics Review. 2019, 27:6. doi:10.1007/s00159-019-0117-5
Resumen: Asteroids and other Small Solar System Bodies (SSSBs) are of high general and scientific interest in many aspects. The origin, formation, and evolution of our Solar System (and other planetary systems) can be better understood by analysing the constitution and physical properties of small bodies in the Solar System. Currently, two space missions (Hayabusa2, OSIRIS-REx) have recently arrived at their respective targets and will bring a sample of the asteroids back to Earth. Other small body missions have also been selected by, or proposed to, space agencies. The threat posed to our planet by near-Earth objects (NEOs) is also considered at the international level, and this has prompted dedicated research on possible mitigation techniques. The DART mission, for example, will test the kinetic impact technique. Even ideas for industrial exploitation have risen during the last years. Lastly, the origin of water and life on Earth appears to be connected to asteroids. Hence, future space mission projects will undoubtedly target some asteroids or other SSSBs. In all these cases and research topics, specific knowledge of the structure and mechanical behaviour of the surface as well as the bulk of those celestial bodies is crucial. In contrast to large telluric planets and dwarf planets, a large proportion of such small bodies is believed to consist of gravitational aggregates (‘rubble piles’) with no—or low—internal cohesion, with varying macro-porosity and surface properties (from smooth regolith covered terrain, to very rough collection of boulders), and varying topography (craters, depressions, ridges). Bodies with such structure can sustain some plastic deformation without being disrupted in contrast to the classical visco-elastic models that are generally valid for planets, dwarf planets, and large satellites. These SSSBs are hence better described through granular mechanics theories, which have been a subject of intense theoretical, experimental, and numerical research over the last four decades. This being the case, it has been necessary to use the theoretical, numerical and experimental tools developed within soil mechanics, granular dynamics, celestial mechanics, chemistry, condensed matter physics, planetary and computer sciences, to name the main ones, in order to understand the data collected and analysed by observational astronomy (visible, thermal, and radio), and different space missions. In this paper, we present a review of the multi-disciplinary research carried out by these different scientific communities in an effort to study SSSBs.
Patrocinador/es: Made possible by the International Space Science Institute (ISSI, Bern) support to the international team “Asteroids and Self-Gravitating Bodies as Granular Systems”.
URI: http://hdl.handle.net/10045/93960
ISSN: 0935-4956 (Print) | 1432-0754 (Online)
DOI: 10.1007/s00159-019-0117-5
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © Springer-Verlag GmbH Germany, part of Springer Nature 2019
Revisión científica: si
Versión del editor: https://doi.org/10.1007/s00159-019-0117-5
Aparece en las colecciones:INV - Astronomía y Astrofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Hestroffer_etal_AstronAstrophysRev_final.pdfVersión final (acceso restringido)1,82 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2019_Hestroffer_etal_AstronAstrophysRev_preprint.pdfPreprint (acceso abierto)1,16 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.