Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/92868
Información del item - Informació de l'item - Item information
Título: Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach
Autor/es: Ramón-Fernández, Alberto de | Salar-García, María José | Ruiz-Fernandez, Daniel | Greenman, John | Ieropoulos, Ioannis
Grupo/s de investigación o GITE: Ingeniería Bioinspirada e Informática para la Salud
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Tecnología Informática y Computación
Palabras clave: Microbial fuel cells | Ceramic membranes | Fuzzy inference system | Bioenergy | Modelling
Área/s de conocimiento: Arquitectura y Tecnología de Computadores
Fecha de publicación: 1-oct-2019
Editor: Elsevier
Cita bibliográfica: Applied Energy. 2019, 251: 113321. doi:10.1016/j.apenergy.2019.113321
Resumen: Microbial fuel cells (MFCs) is a promising technology that is able to simultaneously produce bioenergy and treat wastewater. Their potential large-scale application is still limited by the need of optimising their power density. The aim of this study is to simulate the absolute power output by ceramic-based MFCs fed with human urine by using a fuzzy inference system in order to maximise the energy harvesting. For this purpose, membrane thickness, anode area and external resistance, were varied by running a 27-parameter combination in triplicate with a total number of 81 assays performed. Performance indices such as R2 and variance account for (VAF) were employed in order to compare the accuracy of the fuzzy inference system designed with that obtained by using nonlinear multivariable regression. R2 and VAF were calculated as 94.85% and 94.41% for the fuzzy inference system and 79.72% and 65.19% for the nonlinear multivariable regression model, respectively. As a result, these indices revealed that the prediction of the absolute power output by ceramic-based MFCs of the fuzzy-based systems is more reliable than the nonlinear multivariable regression approach. The analysis of the response surface obtained by the fuzzy inference system determines that the maximum absolute power output by the air-breathing set-up studied is 450 μW when the anode area ranged from 160 to 200 cm2, the external loading is approximately 900 Ω and a membrane thickness of 1.6 mm, taking into account that the results also confirm that the latter parameter does not show a significant effect on the power output in the range of values studied.
Patrocinador/es: M.J. Salar-García is supported by Fundación Séneca (Ref. 20372/PD/17). A. De Ramón-Fernández thanks the Ministry of Economy and Competitiveness the financial support for his thesis (Ref. BES-2015–073611). Parts of this work have been funded under the Bill & Melinda Gates Foundation, Grant No. OPP1149065 and the European Commission H2020 Programme, Grant No. 686585.
URI: http://hdl.handle.net/10045/92868
ISSN: 0306-2619 (Print) | 1872-9118 (Online)
DOI: 10.1016/j.apenergy.2019.113321
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.apenergy.2019.113321
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - IBIS - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Ramon-Fernandez_etal_ApplEnergy.pdf2,53 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons