Optimization of multistage membrane distillation system for treating shale gas produced water

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/90149
Información del item - Informació de l'item - Item information
Title: Optimization of multistage membrane distillation system for treating shale gas produced water
Authors: Carrero-Parreño, Alba | Onishi, Viviani C. | Ruiz-Femenia, Rubén | Salcedo Díaz, Raquel | Caballero, José A. | Reyes-Labarta, Juan A.
Research Group/s: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT) | Estudios de Transferencia de Materia y Control de Calidad de Aguas (ETMyCCA)
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Keywords: Shale gas water | Zero liquid discharge (ZLD) | Membrane distillation | Optimal configuration
Knowledge Area: Ingeniería Química
Issue Date: 15-Jun-2019
Publisher: Elsevier
Citation: Desalination. 2019, 460: 15-27. doi:10.1016/j.desal.2019.03.002
Abstract: Thermal membrane distillation (MD) is an emerging technology to desalinate high-salinity wastewaters, including shale gas produced water to reduce the corresponding water footprint of fracturing operations. In this work, we introduce a rigorous optimization model with energy recovery for the synthesis of multistage direct contact membrane distillation (DCMD) system. The mathematical model (implemented in GAMS software) is formulated via generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP). To maximize the total amount of water recovered, the outflow brine is fixed close to salt saturation conditions (300 g·kg−1 water) approaching zero liquid discharge (ZLD). A sensitivity analysis is performed to evaluate the system's behavior under different uncertainty sources such as the heat source availability and inlet salinity conditions. The results emphasize the applicability of this promising technology, especially with low steam cost or waste heat, and reveal variable costs and system configurations depending on inlet conditions. For a produced water salinity ranging from 150 g·kg−1 water to 250 g·kg−1 water based on Marcellus play, an optimal treating cost are between 11.5 and 4.4 US$ m−3 is obtained when using low-cost steam. This cost can decrease to 2.8 US$ m−3 when waste heat from shale gas operations is used.
Sponsor: This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No. 640979.
URI: http://hdl.handle.net/10045/90149
ISSN: 0011-9164 (Print) | 1873-4464 (Online)
DOI: 10.1016/j.desal.2019.03.002
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2019 Elsevier B.V.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.desal.2019.03.002
Appears in Collections:Research funded by the EU
INV - ETMyCCA - Artículos de Revistas
INV - CONCEPT - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Carrero_etal_Desalination_final.pdfVersión final (acceso restringido)2,41 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Carrero_etal_Desalination_preprint.pdfPreprint (acceso abierto)1,68 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.