Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density
Authors: Schlee, Philipp | Herou, Servann | Jervis, Rhodri | Shearing, Paul R. | Brett, Dan J.L. | Baker, Darren | Hosseinaei, Omid | Tomani, Per | Murshed, M. Mangir | Li, Yaomin | Mostazo-López, María José | Cazorla-Amorós, Diego | Jorge, Ana Belen | Titirici, Maria-Magdalena
Research Group/s: Materiales Carbonosos y Medio Ambiente
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Free-standing supercapacitors | Kraft lignin nanofibers | Remarkable volumetric | Energy density
Knowledge Area: Química Inorgánica
Issue Date: 14-Jan-2019
Publisher: Royal Society of Chemistry
Citation: Chemical Science. 2019, 10: 2980-2988. doi:10.1039/C8SC04936J
Abstract: We have discovered a very simple method to address the challenge associated with the low volumetric energy density of free-standing carbon nanofiber electrodes for supercapacitors by electrospinning Kraft lignin in the presence of an oxidizing salt (NaNO3) and subsequent carbonization in a reducing atmosphere. The presence of the oxidative salt decreases the diameter of the resulting carbon nanofibers doubling their packing density from 0.51 to 1.03 mg cm−2 and hence doubling the volumetric energy density. At the same time, the oxidative NaNO3 salt eletrospun and carbonized together with lignin dissolved in NaOH acts as a template to increase the microporosity, thus contributing to a good gravimetric energy density. By simply adjusting the process parameters (amount of oxidizing/reducing agent), the gravimetric and volumetric energy density of the resulting lignin free-standing carbon nanofiber electrodes can be carefully tailored to fit specific power to energy demands. The areal capacitance increased from 147 mF cm−2 in the absence of NaNO3 to 350 mF cm−2 with NaNO3 translating into a volumetric energy density increase from 949 μW h cm−3 without NaNO3 to 2245 μW h cm−3 with NaNO3. Meanwhile, the gravimetric capacitance also increased from 151 F g−1 without to 192 F g−1 with NaNO3.
Sponsor: We would like to thank EPSRC (EP/R021554/1, EP/N509899/1, EP/P031323/1, EP/S018204/1) for the financial support.
ISSN: 2041-6520 (Print) | 2041-6539 (Online)
DOI: 10.1039/C8SC04936J
Language: eng
Type: info:eu-repo/semantics/article
Rights: This article is licensed under a Creative Commons Attribution 3.0 Unported Licence
Peer Review: si
Publisher version:
Appears in Collections:INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Schlee_etal_ChemSci.pdf1,34 MBAdobe PDFOpen Preview

This item is licensed under a Creative Commons License Creative Commons