Electroactive biochar outperforms highly conductive carbon materials for biodegrading pollutants by enhancing microbial extracellular electron transfer

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/88307
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorElectrocatálisis y Electroquímica de Polímeroses_ES
dc.contributor.authorPrado, Amanda-
dc.contributor.authorBerenguer Betrián, Raúl-
dc.contributor.authorEsteve-Núñez, Abraham-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Físicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Materialeses_ES
dc.date.accessioned2019-02-15T07:53:11Z-
dc.date.available2019-02-15T07:53:11Z-
dc.date.issued2019-02-12-
dc.identifier.citationCarbon. 2019. doi:10.1016/j.carbon.2019.02.038es_ES
dc.identifier.issn0008-6223 (Print)-
dc.identifier.issn1873-3891 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/88307-
dc.description.abstractThe development and full-scale application of microbial electrochemical technologies (METs) for wastewater treatment demand massive amounts of electroconductive carbon materials to promote extracellular electron transfer (EET) and biodegradation. While the potential capability of these materials and their properties to design efficient systems is still in their infancy, the state-of-the-art METs are based on highly-conductive fossil-derived carbons. In this work we evaluate the performance of different electroconductive carbon materials (graphite, coke, biochar) for supporting microbial EET and treating urban wastewater. Our results reveal that the electroconductive biochar was the most efficient biofilter-material, enabling to stimulate bioremediation at anodic potential as high as 0.6 V (maximum removal efficiency (92%) and degradation rate (185 g-COD m−3d−1)), and to fulfill the discharge limits under conditions where the other materials failed. A deep materials characterization suggests that, despite electroconductivity is necessary, the optimal EET on biochar can be mainly assigned to its large number of electroactive surface oxygen functionalities, which can reversibly exchange electrons through the geobattery mechanism. We propose the modulation of quinone-like e-acceptors by anodic polarization to promote the biodegradation capability of carbon materials. Because of its great efficiency and sustainability, electroactive biochar will greatly expand the applicability of METs at large scale.es_ES
dc.description.sponsorshipThis investigation has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No. 642190 (Project “iMETLAND”; http://www.imetland.eu). Amanda Prado de Nicolás was funded by the “Formación de Personal Investigador (FPI)“ PhD fellowship programme from the University of Alcalá. The authors thank the MINECO and FEDER (IJCI-2014-20012) for financial support.es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rights© 2019 Published by Elsevier Ltd.es_ES
dc.subjectMicrobial electrochemical technologieses_ES
dc.subjectCarbon materialses_ES
dc.subject.otherQuímica Físicaes_ES
dc.titleElectroactive biochar outperforms highly conductive carbon materials for biodegrading pollutants by enhancing microbial extracellular electron transferes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1016/j.carbon.2019.02.038-
dc.relation.publisherversionhttps://doi.org/10.1016/j.carbon.2019.02.038es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/642190es_ES
dc.date.embargoEndinfo:eu-repo/date/embargoEnd/2021-02-13es_ES
Appears in Collections:INV - GEPE - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Prado_etal_Carbon_accepted.pdfEmbargo 24 meses (acceso abierto: 13 febr. 2021)3,85 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Prado_etal_Carbon_SuppData.pdfSupporting Info375,08 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.