Modeling of oxygen reduction reaction in porous carbon materials in alkaline medium. Effect of microporosity

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/87263
Información del item - Informació de l'item - Item information
Title: Modeling of oxygen reduction reaction in porous carbon materials in alkaline medium. Effect of microporosity
Authors: Gabe, Atsushi | Ruiz‐Rosas, Ramiro | González-Gaitán, Carolina | Morallon, Emilia | Cazorla-Amorós, Diego
Research Group/s: Electrocatálisis y Electroquímica de Polímeros | Materiales Carbonosos y Medio Ambiente
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Oxygen reduction reaction | Hydrogen peroxide reduction | Microporosity | ORR mathematical modeling | Charge transfer reaction | Mass transfer rate
Knowledge Area: Química Inorgánica | Química Física
Issue Date: 1-Feb-2019
Publisher: Elsevier
Citation: Journal of Power Sources. 2019, 412: 451-464. doi:10.1016/j.jpowsour.2018.11.075
Abstract: The role of porosity, and more specifically, microporosity, in the performance of carbon materials as Oxygen Reduction Reaction (ORR) catalysts in alkaline medium still has to be clarified. For this purpose, a highly microporous KOH-activated carbon and a microporous char have been prepared and their ORR performance in alkaline media were compared to that of two commercial carbon blacks with low and high surface areas, respectively. Interestingly, all carbon materials show a two-wave electrocatalytic process, where the limiting current and the number of electron transferred increase when going to more negative potentials. The limiting current and onset potential of the second wave is positively related to the amount of microporosity, and H2O2 electrochemical reduction tests have confirmed that the second wave could be related to the catalytic activity towards this reaction. In accordance to these findings, a model is developed that takes into account narrow and wide micropores in both charge transfer reactions and the mass transfer rate of O2 and H2O2. This model successfully reproduces the experimental electrochemical response during ORR of the analyzed porous carbon materials and suggests the important role of narrow micropores in H2O2 reduction.
Sponsor: This work was supported by MINECO (CTQ2015-66080-R MINECO/FEDER) and Heiwa Nakajima Foundation.
URI: http://hdl.handle.net/10045/87263
ISSN: 0378-7753 (Print) | 1873-2755 (Online)
DOI: 10.1016/j.jpowsour.2018.11.075
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 Elsevier B.V.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.jpowsour.2018.11.075
Appears in Collections:INV - GEPE - Artículos de Revistas
INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Gabe_etal_JPowerSources_final.pdfVersión final (acceso restringido)2,49 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Gabe_etal_JPowerSources_preprint.pdfPreprint (acceso abierto)2,06 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.