Potassium Catalytic Effect on Gasification Reactions of Coal and Coal/Biomass Blends under Oxy-combustion Conditions. An Isotopic Study Using 13C18O2

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/86807
Información del item - Informació de l'item - Item information
Title: Potassium Catalytic Effect on Gasification Reactions of Coal and Coal/Biomass Blends under Oxy-combustion Conditions. An Isotopic Study Using 13C18O2
Authors: Betancur, Yuli | Sánchez, Astrid | Bueno López, Agustín | López, Diana
Research Group/s: Materiales Carbonosos y Medio Ambiente
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Oxy-combustion | K2CO3 impregnation | Coal/biomass blends | Gasification reactions | Isotopic labelled gas (13C18O2)
Knowledge Area: Química Inorgánica
Issue Date: 1-Jan-2018
Publisher: American Chemical Society
Citation: Energy & Fuels. 2018, 32(2): 2439-2449. doi:10.1021/acs.energyfuels.7b03399
Abstract: In the present study, 20 wt % K2CO3 was added to coal and coal/biomass blends in a 20:80 wt % ratio and subsequently were heating-treated at 600 °C using CO2 or N2 atmospheres. The reactivity under oxy-combustion conditions (21% O2 + 79% CO2) was studied by thermogravimetry, and characterization of chars was carried out by N2 adsorption, scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy. Higher activation energy for impregnated coal/biomass blends compared to impregnated coal was observed, likewise, for materials thermally treated with CO2. It is demonstrated that CO2 gasification takes place together with O2 combustion under oxy-combustion conditions. Isotopically labeled 13C18O2 was used to confirm the participation of CO2 gasification reactions at 450, 500, 550, and 600 °C in both catalyzed and uncatalyzed systems under O2 + CO2. The catalytic effect of potassium promotes CO2 gasification, and the highest CO (12C18O) desorption was obtained with impregnated samples. It is possible to suggest that CO2 gasification reactions follow different reaction pathways in the presence or absence of potassium. The catalytic gasification reaction proceeded preferentially through a molecular CO2 (13C18O2) adsorption route, while the noncatalyzed systems advanced using a dissociative adsorption pathway.
Sponsor: The authors thank the “Departamento Administrativo de Ciencia, Tecnología e Innovación”- COLCIENCIAS (Administrative Department of Science, Technology and Innovation from Colombia) through the program “Research and Innovation on Advanced Combustion in Industrial Use”, code No. 1115-543-31906, contract No. 0852-2012.
URI: http://hdl.handle.net/10045/86807
ISSN: 0887-0624 (Print) | 1520-5029 (Online)
DOI: 10.1021/acs.energyfuels.7b03399
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 American Chemical Society
Peer Review: si
Publisher version: https://doi.org/10.1021/acs.energyfuels.7b03399
Appears in Collections:INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Betancur_etal_EnergyFuel_final.pdfVersión final (acceso restringido)8,55 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Betancur_etal_EnergyFuel_accepted.pdfAccepted Manuscript (acceso abierto)3,93 MBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.