Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/8479
Información del item - Informació de l'item - Item information
Title: Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results
Authors: Klima, Jiri | Frías Ferrer, Ángel | González García, José | Ludvik, Jiri | Sáez Bernal, Verónica | Iniesta, Jesus
Research Group/s: Nuevos Desarrollos Tecnológicos en Electroquímica: Sonoelectroquímica y Bioelectroquímica
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Academy of Sciences of the Czech Republic. J. Heyrovský Insitute of Physical Chemistry
Keywords: Ultrasound | Intensity distribution | Cell geometry optimisation | Wave equation
Knowledge Area: Química Física
Date Created: 2005
Issue Date: Jan-2007
Publisher: Elsevier
Citation: KLIMA, Jiri, et al. “Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results”. Ultrasonics Sonochemistry. Vol. 14, Issue 1 (Jan. 2007). ISSN 1350-4177, pp. 19-28
Abstract: The intensity distribution of the ultrasonic energy is, after the frequency, the most significant parameter to characterize ultrasonic fields in any sonochemical experiment. Whereas in the case of low intensity ultrasound the measurement of intensity and its distribution is well solved, in the case of high intensity (when cavitation takes place) the measurement is much more complicated. That is why the predicting the acoustic pressure distribution within the cell is desirable. A numerical solution of the wave equation gave the distribution of intensity within the cell. The calculations together with experimental verification have shown that the whole reactor behaves like a resonator and the energy distribution depends strongly on its shape. The agreement between computational simulations and experiments allowed optimisation of the shape of the sonochemical reactor. The optimal geometry resulted in astrong increase in intensity along a large part of the cell. The advantages of such optimised geometry are (i) the ultrasonic power necessary for obtaining cavitation is low, (ii) low power delivered to the system results in only weak heating; consequently no cooling is necessary and (iii) the "active volume" is large, i.e. the fraction of the reactor volume with high intensity is large and is not limited to a vicinity close to the horn tip.
Sponsor: COST D32 for STSM grant, the Ministry of Education, Youth and Sports (MSMT) of the Czech Republic - grant number 1P05OC074 and the Grant Agency of the Academy of Sciences of the Czech Republic - grant number A4040304; Generalidad Valenciana (Project GV05/104).
URI: http://hdl.handle.net/10045/8479
ISSN: 1350-4177
DOI: 10.1016/j.ultsonch.2006.01.001
Language: eng
Type: info:eu-repo/semantics/article
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.ultsonch.2006.01.001
Appears in Collections:INV - NDTESB - Artículos de Revistas
INV - LEQA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnailmanuscripttopdf.pdfVersión revisada (acceso libre)999,11 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.