Ni/LnOx catalysts (Ln = La, Ce or Pr) for CO2 methanation

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/83713
Información del item - Informació de l'item - Item information
Title: Ni/LnOx catalysts (Ln = La, Ce or Pr) for CO2 methanation
Authors: Alcalde-Santiago, Virginia | Davó-Quiñonero, Arantxa | Lozano Castelló, Dolores | Quindimil, Adrián | De-La-Torre, Unai | Pereda-Ayo, Beñat | González-Marcos, José A. | González-Velasco, Juan R. | Bueno López, Agustín
Research Group/s: Materiales Carbonosos y Medio Ambiente
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Carbon dioxide | Methane | Nickel catalysts | Hydrogenation | Ceria | Lanthanides
Knowledge Area: Química Inorgánica
Issue Date: 13-Nov-2018
Publisher: Wiley-VCH Verlag GmbH & Co. KGaA
Citation: ChemCatChem. 2019, 11(2): 810-819. doi:10.1002/cctc.201801585
Abstract: The effect of the LnOx support has been studied for Ni‐based CO2 methanation catalysts. 10 wt. % nickel catalysts with LaOx, CeO2 and PrOx supports have been prepared, characterized by N2 adsorption, XRD, XRF, TG‐MS (N2‐TPD and H2‐TPR) and XPS, and have been tested for CO2 methanation. The catalytic activity follows the trend Ni/CeO2 > Ni/PrOx >> Ni/LaOx, all catalysts being very selective towards CH4 formation. The activity depends both on the nature of the catalytic active sites and on the stability of the surface CO2 and H2O species. Ni/CeO2 is the most active catalyst because (i) the Ni2+‐ceria interaction leads to the formation of the highest population of active sites for CO2 dissociation, (ii) the reduced Ni0 sites where H2 dissociation takes place are the most electronegative and active, and (iii) the stability of surface CO2 and H2O species is lowest. Ni/LaOx achieves lower activity because of the strong chemisorption of H2O and CO2, which poison the catalyst surface, and because this support is not able to promote the formation of highly active sites for CO2 and H2 dissociation. The behavior of Ni/PrOx is intermediate, being slightly lower to that of Ni/CeO2 because the formation of active sites is not so efficient and because the stability of chemisorbed CO2 is slightly higher.
Sponsor: The authors thank the financial support of Basque Government (Consolidated Group IT657-13), Spanish Ministry of Economy and Competitiveness (Projects CTQ2015-67597-C2-1-R and CTQ2015-67597-C2-2-R), and the EU (FEDER funding). ADQ thanks the Spanish Ministry of Education, Culture and Sports (grant FPU14/01178) and AQ the University of the Basque Country (grant PIF15/351).
URI: http://hdl.handle.net/10045/83713
ISSN: 1867-3880 (Print) | 1867-3899 (Online)
DOI: 10.1002/cctc.201801585
Language: eng
Type: info:eu-repo/semantics/article
Rights: © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Peer Review: si
Publisher version: https://doi.org/10.1002/cctc.201801585
Appears in Collections:INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Alcalde-Santiago_etal_ChemCatChem_accepted.pdfEmbargo 12 meses (acceso abierto: 14 nov. 2019)4,38 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Alcalde-Santiago_etal_ChemCatChem_final.pdfVersión final (acceso restringido)3,1 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.