Some results about the facial geometry of convex semi-infinite systems

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Some results about the facial geometry of convex semi-infinite systems
Authors: Fajardo Gómez, María Dolores | López Cerdá, Marco A.
Research Group/s: Programación Semi-infinita
Center, Department or Service: Universidad de Alicante. Departamento de Estadística e Investigación Operativa
Keywords: Semi-infinite convex inequalities systems | Constraint qualifications | Slater condition | Facial structure of the feasible set
Knowledge Area: Matemáticas
Issue Date: 2006
Publisher: Taylor & Francis
Citation: FAJARDO GÓMEZ, María Dolores; LÓPEZ CERDÁ, Marco Antonio. “Some results about the facial geometry of convex semi-infinite systems”. Optimization. Vol. 55, Issue 5-6 (2006). ISSN 0233-1934, pp. 661-684
Abstract: We study the geometrical properties of the convex semi-infinite systems and their solution sets. Our main focus is on those systems enjoying the so-called locally Farkas-Minkowski property. The article provides convex counterparts of some results already proven for linear systems, pointing out the main differences, and finding sufficient conditions for their fulfilment.
ISSN: 0233-1934 (Print) | 1029-4945 (Online)
DOI: 10.1080/02331930600816080
Language: eng
Type: info:eu-repo/semantics/article
Rights: This is an electronic version of an article published in Optimization ©2006 Copyright Taylor & Francis; Optimization is available online at
Peer Review: si
Publisher version:
Appears in Collections:INV - LOPT - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnailfacial_geometry.pdfVersión revisada (acceso libre)200,72 kBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.