Optimal Design of a Two-Stage Membrane System for Hydrogen Separation in Refining Processes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/83388
Información del item - Informació de l'item - Item information
Título: Optimal Design of a Two-Stage Membrane System for Hydrogen Separation in Refining Processes
Autor/es: Arias, Ana Marisa | Mores, Patricia Liliana | Scenna, Nicolás José | Caballero, José A. | Mussati, Sergio Fabián | Mussati, Miguel Ceferino
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química
Palabras clave: H2 separation | Multi-stage membrane system | Design | Operation | Simultaneous optimization | NLP | GAMS
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: 31-oct-2018
Editor: MDPI
Cita bibliográfica: Arias AM, Mores PL, Scenna NJ, Caballero JA, Mussati SF, Mussati MC. Optimal Design of a Two-Stage Membrane System for Hydrogen Separation in Refining Processes. Processes. 2018; 6(11):208. doi:10.3390/pr6110208
Resumen: This paper fits into the process system engineering field by addressing the optimization of a two-stage membrane system for H2 separation in refinery processes. To this end, a nonlinear mathematical programming (NLP) model is developed to simultaneously optimize the size of each membrane stage (membrane area, heat transfer area, and installed power for compressors and vacuum pumps) and operating conditions (flow rates, pressures, temperatures, and compositions) to achieve desired target levels of H2 product purity and H2 recovery at a minimum total annual cost. Optimal configuration and process design are obtained from a model which embeds different operating modes and process configurations. For instance, the following candidate ways to create the driving force across the membrane are embedded: (a) compression of both feed and/or permeate streams, or (b) vacuum application in permeate streams, or (c) a combination of (a) and (b). In addition, the potential selection of an expansion turbine to recover energy from the retentate stream (energy recovery system) is also embedded. For a H2 product purity of 0.90 and H2 recovery of 90%, a minimum total annual cost of 1.764 M$·year−1 was obtained for treating 100 kmol·h−1 with 0.18, 0.16, 0.62, and 0.04 mole fraction of H2, CO, N2, CO2, respectively. The optimal solution selected a combination of compression and vacuum to create the driving force and removed the expansion turbine. Afterwards, this optimal solution was compared in terms of costs, process-unit sizes, and operating conditions to the following two sub-optimal solutions: (i) no vacuum in permeate stream is applied, and (ii) the expansion turbine is included into the process. The comparison showed that the latter (ii) has the highest total annual cost (TAC) value, which is around 7% higher than the former (i) and 24% higher than the found optimal solution. Finally, a sensitivity analysis to investigate the influence of the desired H2 product purity and H2 recovery is presented. Opposite cost-based trade-offs between total membrane area and total electric power were observed with the variations of these two model parameters. This paper contributes a valuable decision-support tool in the process system engineering field for designing, simulating, and optimizing membrane-based systems for H2 separation in a particular industrial case; and the presented optimization results provide useful guidelines to assist in selecting the optimal configuration and operating mode.
Patrocinador/es: This work was supported by grants from CONICET (PIP 2014-2016 Nº 11220130100606CO) and ANPCyT (PICT Nº 2013–1980) from Argentina.
URI: http://hdl.handle.net/10045/83388
ISSN: 2227-9717
DOI: 10.3390/pr6110208
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/pr6110208
Aparece en las colecciones:INV - CONCEPT - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2018_Arias_etal_Processes.pdf3,7 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons