The Central Nervous System Modulates the Neuromechanical Delay in a Broad Range for the Control of Muscle Force

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/82867
Información del item - Informació de l'item - Item information
Título: The Central Nervous System Modulates the Neuromechanical Delay in a Broad Range for the Control of Muscle Force
Autor/es: Del Vecchio, Alessandro | Úbeda, Andrés | Sartori, Massimo | Azorín, José M. | Felici, Francesco | Farina, Dario
Grupo/s de investigación o GITE: Automática, Robótica y Visión Artificial
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Palabras clave: Electromechanical delay | Neural Drive | Motor unit | Force Prediction | Sinusoidal Contractions
Área/s de conocimiento: Ingeniería de Sistemas y Automática
Fecha de publicación: 5-jul-2018
Editor: American Physiological Society
Cita bibliográfica: Journal of Applied Physiology. 2018, 125(5): 1404-1410. doi:10.1152/japplphysiol.00135.2018
Resumen: Force is generated by muscle units according to the neural activation sent by motor neurons. The motor unit is therefore the interface between the neural coding of movement and the musculotendinous system. Here we propose a method to accurately measure the latency between an estimate of the neural drive to muscle and force. Further, we systematically investigate this latency, that we refer to as the neuromechanical delay (NMD), as a function of the rate of force generation. In two experimental sessions, eight men performed isometric finger abduction and ankle dorsiflexion sinusoidal contractions at three frequencies and peak-to-peak amplitudes [0.5,1,1.5 (Hz); 1,5,10 of maximal force (%MVC)], with a mean force of 10% MVC. The discharge timings of motor units of the first dorsal interosseous (FDI) and tibialis anterior (TA) muscle were identified by high-density surface EMG decomposition. The neural drive was estimated as the cumulative discharge timings of the identified motor units. The neural drive predicted 80 ± 0.4% of the force fluctuations and consistently anticipated force by 194.6 ± 55 ms (average across conditions and muscles). The NMD decreased non-linearly with the rate of force generation (R2 = 0.82 ± 0.07; exponential fitting) with a broad range of values (from 70 to 385 ms) and was 66 ± 0.01 ms shorter for the FDI than TA (P<0.001). In conclusion, we provided a method to estimate the delay between the neural control and force generation and we showed that this delay is muscle-dependent and is modulated within a wide range by the central nervous system.
Patrocinador/es: This work was partly funded by the ERC Advanced grant DEMOVE (267888) and Proof-of-Concept Project Interspine (737570).
URI: http://hdl.handle.net/10045/82867
ISSN: 8750-7587 (Print) | 1522-1601 (Online)
DOI: 10.1152/japplphysiol.00135.2018
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2018 American Physiological Society
Revisión científica: si
Versión del editor: https://doi.org/10.1152/japplphysiol.00135.2018
Aparece en las colecciones:INV - HURO - Artículos de Revistas
INV - AUROVA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2018_Del-Vecchio_etal_JApplPhysiol_accepted.pdfAccepted Manuscript (acceso abierto)941,9 kBAdobe PDFAbrir Vista previa
Thumbnail2018_Del-Vecchio_etal_JApplPhysiol_final.pdfVersión final (acceso restringido)329,87 kBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.