Conductance through the armchair graphene nanoribbons 9-AGNR: Strong dependence on contact to leads

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/82507
Información del item - Informació de l'item - Item information
Title: Conductance through the armchair graphene nanoribbons 9-AGNR: Strong dependence on contact to leads
Authors: Vergés Brotons, José Antonio | Chiappe, Guillermo | San-Fabián, Emilio | Louis, Enrique
Research Group/s: Física de la Materia Condensada | Química Cuántica | Materiales Avanzados
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada | Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Conductance | Graphene nanoribbons | 9-AGNR
Knowledge Area: Física Aplicada | Química Física | Física de la Materia Condensada
Issue Date: 15-Oct-2018
Publisher: American Physical Society
Citation: Physical Review B. 2018, 98: 155415. doi:10.1103/PhysRevB.98.155415
Abstract: The successful use of graphene nanoribbons (GNRs) in a variety of applications in nanoelectronics depends not only on reliable control of their forbidden gaps, but also on the understanding of the effects that contacts to leads may have on their conductance G. By combining Landauer's formalism and a simplified version of the embedded cluster method, G through suspended 9-AGNR has been calculated as a function of energy (sample bias) and the strength of the contact between the ribbon and leads attached to both zigzag edges. Green's functions of contacted ribbons have been derived from HF nonspin polarized solutions of the Pariser-Parr-Pople Hamiltonian. It is shown that the G associated with the two quasidegenerate states around the Fermi level, which are strongly localized at the zigzag edges, equals a conductance quantum G0 for very weak leads-ribbon coupling, decreasing to zero as that coupling increases. At the Fermi level G is zero for small coupling, increasing up to G0 for a value of coupling that depends on the GNR length, and, finally, decreasing to zero for large coupling. Conductance through other energies, starting at G=0 for no coupling, increases with coupling to the electrodes up to near one quantum at a pace that may appreciably depend on the particular molecular orbital. These results illustrate the difficulties that may be found in exploring practical uses of GNRs.
Sponsor: Financial support by the Spanish “Ministerio de Ciencia, Innovación y Universidades” (Grants FIS2015-64222-C2-1-P and FIS2015-64222-C2-2-P) and the Universidad de Alicante is gratefully acknowledged.
URI: http://hdl.handle.net/10045/82507
ISSN: 2469-9950 (Print) | 2469-9969 (Online)
DOI: 10.1103/PhysRevB.98.155415
Language: eng
Type: info:eu-repo/semantics/article
Rights: ©2018 American Physical Society
Peer Review: si
Publisher version: https://doi.org/10.1103/PhysRevB.98.155415
Appears in Collections:INV - QC - Artículos de Revistas
INV - Física de la Materia Condensada - Artículos de Revistas
INV - LMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Verges_etal_PhysRevB.pdf1,87 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.