Electrochemical softening of concentrates from an electrodialysis brackish water desalination plant: Efficiency enhancement using a three-dimensional cathode

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/81887
Información del item - Informació de l'item - Item information
Title: Electrochemical softening of concentrates from an electrodialysis brackish water desalination plant: Efficiency enhancement using a three-dimensional cathode
Authors: Sanjuán, Ignacio | Benavente, David | García García, Vicente | Expósito Rodríguez, Eduardo | Montiel, Vicente
Research Group/s: Electroquímica Aplicada y Electrocatálisis | Petrología Aplicada
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Departamento de Ciencias de la Tierra y del Medio Ambiente
Keywords: Electrochemical softening | Hardness removal | Three-dimensional electrodes | Electroprecipitation | Concentrate | Wastewater treatment
Knowledge Area: Química Física | Petrología y Geoquímica
Issue Date: 8-Jan-2019
Publisher: Elsevier
Citation: Separation and Purification Technology. 2019, 208: 217-226. doi:10.1016/j.seppur.2018.01.066
Abstract: The electrochemical softening method to remove hardness from water has not been applied in desalination practice due to a high cathodic area requirement. In this work, the use of a 3D stainless steel wool cathode is proposed to overcome this technical limitation. An extensive comparison between the 3D cathode and a 2D Ti mesh has been presented, showing higher hardness removal for the 3D one. Experiments have been conducted with waters similar to concentrates derived from a brackish water treatment by electrodialysis. In addition, the method has been proved to be efficient for different water compositions in terms of hardness, alkalinity or the presence of an anti-scalant. The main influencing parameters (flow rate and current density) have been studied and it can be concluded that lower flow rates (below 1.2 L h−1) give rise to a better efficiencies and 100 A m−2 is the optimum current density. Moreover, the precipitate was characterised by SEM, EDX and XRD showing that Ca2+ is removed as calcite and aragonite (CaCO3), whereas Mg2+ is precipitated as brucite (Mg(OH)2). Finally, long-term experiments revealed that the 3D stainless steel cathode has a better performance than the 2D Ti mesh, but only at short times.
URI: http://hdl.handle.net/10045/81887
ISSN: 1383-5866 (Print) | 1873-3794 (Online)
DOI: 10.1016/j.seppur.2018.01.066
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 Elsevier B.V.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.seppur.2018.01.066
Appears in Collections:INV - LEQA - Artículos de Revistas
INV - PETRA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Sanjuan_etal_SeparPurifTech_final.pdfVersión final (acceso restringido)1,29 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Sanjuan_etal_SeparPurifTech_accepted.pdfEmbargo 24 meses (acceso abierto: 2 febr. 2020)1,48 MBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.