Holistic Planning Model for Sustainable Water Management in the Shale Gas Industry

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/81707
Información del item - Informació de l'item - Item information
Título: Holistic Planning Model for Sustainable Water Management in the Shale Gas Industry
Autor/es: Carrero-Parreño, Alba | Reyes-Labarta, Juan A. | Salcedo Díaz, Raquel | Ruiz-Femenia, Rubén | Onishi, Viviani C. | Caballero, José A. | Grossmann, Ignacio E.
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT) | Estudios de Transferencia de Materia y Control de Calidad de Aguas (ETMyCCA)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Palabras clave: Water management | Optimization | MINLP | Planning | Shale gas | Sustainability profit
Área/s de conocimiento: Ingeniería Química
Fecha de creación: 11-may-2018
Fecha de publicación: 4-sep-2018
Editor: American Chemical Society
Cita bibliográfica: Industrial & Engineering Chemistry Research. 2018, 57(39): 13131-13143. doi:10.1021/acs.iecr.8b02055
Resumen: To address water planning decisions in shale gas operations, we present a novel water management optimization model that explicitly takes into account the effect of high concentrations of total dissolved solids (TDS) and temporal variations in the impaired water. The model comprises different water management strategies: (a) direct wastewater reuse, which is possible because of new additives tolerant to high TDS concentrations but at the expense of increasing the costs; (b) wastewater treatment, separately taking into account pretreatment, softening, and desalination technologies; and (c) the use of Class II disposal sites. The objective is to maximize the “sustainability profit” by determining the flowback destination (reuse, degree of treatment, or disposal), the fracturing schedule, the fracturing-fluid composition, and the number of water-storage tanks needed for each period of time. Because of the rigorous determination of TDS in all water streams, the model is a nonconvex MINLP model that is tackled in two steps: first, an MILP model is solved on the basis of McCormick relaxations; next, the binary variables that determine the fracturing schedule are fixed, and a smaller MINLP is solved. Finally, several case studies based on Marcellus Shale Play are optimized to illustrate the effectiveness of the proposed formulation. The model identifies direct reuse as the best water-management option to improve both economic and environmental criteria.
Patrocinador/es: This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement no. 640979 and from the Spanish Ministerio de Economiá , Industria y Competitividad CTQ2016-77968-C3-02-P (FEDER, UE).
URI: http://hdl.handle.net/10045/81707
ISSN: 0888-5885 (Print) | 1520-5045 (Online)
DOI: 10.1021/acs.iecr.8b02055
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2018 American Chemical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acs.iecr.8b02055
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - CONCEPT - Artículos de Revistas
INV - ETMyCCA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2018_Carrero-Parreno_etal_IndEngChemRes_preprint.pdfPreprint (acceso abierto)2,21 MBAdobe PDFAbrir Vista previa
Thumbnail2018_Carrero-Parreno_etal_IndEngChemRes_final.pdfVersión final (acceso restringido)1,95 MBAdobe PDFAbrir    Solicitar una copia

Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.