New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors
Authors: Abouelamaiem, Dina Ibrahim | Mostazo-López, María José | He, Guanjie | Patel, Drasti | Neville, Tobias P. | Parkin, Ivan P. | Lozano Castelló, Dolores | Morallon, Emilia | Cazorla-Amorós, Diego | Jorge, Ana Belen | Wang, Rongfang | Ji, Shan | Titirici, Maria-Magdalena | Shearing, Paul R. | Brett, Dan J.L.
Research Group/s: Materiales Carbonosos y Medio Ambiente | Electrocatálisis y Electroquímica de Polímeros
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Activated carbons | Extreme potentials | in situ Raman spectra | Porous morphology | Supercapacitor
Knowledge Area: Química Inorgánica | Química Física
Issue Date: Oct-2018
Publisher: Elsevier
Citation: Journal of Energy Storage. 2018, 19: 337-347. doi:10.1016/j.est.2018.08.014
Abstract: Activated carbons, with different surface chemistry and porous textures, were used to study the mechanism of electrochemical hydrogen and oxygen evolution in supercapacitor devices. Cellulose precursor materials were activated with different potassium hydroxide (KOH) ratios, and the electrochemical behaviour was studied in 6 M KOH electrolyte. In situ Raman spectra were collected to obtain the structural changes of the activated carbons under severe electrochemical oxidation and reduction conditions, and the obtained data were correlated to the cyclic voltammograms obtained at high anodic and cathodic potentials. Carbon-hydrogen bonds were detected for the materials activated at high KOH ratios, which form reversibly under cathodic conditions. The influence of the specific surface area, narrow microporosity and functional groups in the carbon electrodes on their chemical stability and hydrogen capture mechanism in supercapacitor applications has been revealed.
Sponsor: The authors would like to thank the Engineering and Physical Sciences Research (EPSRC) for financial support of electrochemical energy conversion and storage research in the Electrochemical Innovation Lab (EP/R023581/1; EP/P009050/1; EP/N032888/1; EP/K014706/2; EP/M014371/1; EP/M023508/1; EP/M009394/1; EP/K038656/1), the Royal Academy of Engineering, Generalitat Valenciana and FEDER (PROMETEOII/2014/010), projects CTQ2015-66080-R (MINECO/FEDER). M.M.T and D.I.A. are grateful to UPM-Kymmene Corporation that provided the cellulose materials used throughout the experiments. M.J.M.L. acknowledges Generalitat Valenciana for the financial support through a VALi+d contract (ACIF/2015/374). I.P.P and G.H. thank the China Scholarship Council (CSC) and EPSRC for their financial support (EP/L015862/1).
ISSN: 2352-152X (Print) | 2352-1538 (Online)
DOI: 10.1016/j.est.2018.08.014
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (
Peer Review: si
Publisher version:
Appears in Collections:INV - GEPE - Artículos de Revistas
INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Abouelamaiem_etal_JEnergyStorage.pdf2,62 MBAdobe PDFOpen Preview

This item is licensed under a Creative Commons License Creative Commons