Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/77832
Información del item - Informació de l'item - Item information
Title: Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production
Authors: Adamik, Robert K. | Hernández Ibáñez, Naiara | Iniesta, Jesus | Edwards, Jennifer K. | Howe, Alexander G.R. | Armstrong, Robert D. | Taylor, Stuart H. | Roldan, Alberto | Rong, Yuanyang | Malpass-Evans, Richard | Carta, Mariolino | McKeown, Neil B. | He, Daping | Marken, Frank
Research Group/s: Electroquímica Aplicada y Electrocatálisis
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Heterocarbon | Microporosity | Voltammetry | Peroxide | Bifunctional catalysis
Knowledge Area: Química Física
Issue Date: 18-Jul-2018
Publisher: MDPI
Citation: Adamik RK, Hernández-Ibáñez N, Iniesta J, Edwards JK, Howe AGR, Armstrong RD, Taylor SH, Roldan A, Rong Y, Malpass-Evans R, Carta M, McKeown NB, He D, Marken F. Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production. Nanomaterials. 2018; 8(7):542. doi:10.3390/nano8070542
Abstract: The one-step vacuum carbonization synthesis of a platinum nano-catalyst embedded in a microporous heterocarbon (Pt@cPIM) is demonstrated. A nitrogen-rich polymer of an intrinsic microporosity (PIM) precursor is impregnated with PtCl62− to give (after vacuum carbonization at 700 °C) a nitrogen-containing heterocarbon with embedded Pt nanoparticles of typically 1–4 nm diameter (with some particles up to 20 nm diameter). The Brunauer-Emmett-Teller (BET) surface area of this hybrid material is 518 m2 g−1 (with a cumulative pore volume of 1.1 cm3 g−1) consistent with the surface area of the corresponding platinum-free heterocarbon. In electrochemical experiments, the heterocarbon-embedded nano-platinum is observed as reactive towards hydrogen oxidation, but essentially non-reactive towards bigger molecules during methanol oxidation or during oxygen reduction. Therefore, oxygen reduction under electrochemical conditions is suggested to occur mainly via a 2-electron pathway on the outer carbon shell to give H2O2. Kinetic selectivity is confirmed in exploratory catalysis experiments in the presence of H2 gas (which is oxidized on Pt) and O2 gas (which is reduced on the heterocarbon surface) to result in the direct formation of H2O2.
Sponsor: N.H.-I. and J.I. thank MINICINN, Spain (projects CTQ2013-48280-C3-3-R and CTQ2016-76231-C2-2-R) for financial support and the University of Alicante for support for a Ph.D. exchange visit. F.M. and N.B.M. thank the Leverhulme Foundation for financial support (RPG-2014-308: “New Materials for Ionic Diodes and Ionic Photodiodes”).
URI: http://hdl.handle.net/10045/77832
ISSN: 2079-4991
DOI: 10.3390/nano8070542
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.3390/nano8070542
Appears in Collections:INV - LEQA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Adamik_etal_Nanomaterials.pdf1,46 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons