Letting a Neural Network Decide Which Machine Translation System to Use for Black-Box Fuzzy-Match Repair

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/76038
Información del item - Informació de l'item - Item information
Título: Letting a Neural Network Decide Which Machine Translation System to Use for Black-Box Fuzzy-Match Repair
Autor/es: Ortega, John E. | Lu, Weiyi | Meyers, Adam | Cho, Kyunghyun
Palabras clave: Machine Translation
Área/s de conocimiento: Lenguajes y Sistemas Informáticos
Fecha de publicación: 2018
Editor: European Association for Machine Translation
Cita bibliográfica: Ortega, John E., Lu, Weiyi; Meyers, Adam; Cho, Kyunghyun. “Letting a Neural Network Decide Which Machine Translation System to Use for Black-Box Fuzzy-Match Repair”. In: Pérez-Ortiz, Juan Antonio, et al. (Eds.). Proceedings of the 21st Annual Conference of the European Association for Machine Translation: 28-30 May 2018, Universitat d'Alacant, Alacant, Spain, pp. 209-218
Resumen: While systems using the Neural Network-based Machine Translation (NMT) paradigm achieve the highest scores on recent shared tasks, phrase-based (PBMT) systems, rule-based (RBMT) systems and other systems may get better results for individual examples. Therefore, combined systems should achieve the best results for MT, particularly if the system combination method can take advantage of the strengths of each paradigm. In this paper, we describe a system that predicts whether a NMT, PBMT or RBMT will get the best Spanish translation result for a particular English sentence in DGT-TM 20161. Then we use fuzzy-match repair (FMR) as a mechanism to show that the combined system outperforms individual systems in a black-box machine translation setting.
Patrocinador/es: John E. Ortega is supported by the Universitat d’Alacant and the Spanish government through the EFFORTUNE (TIN2015-69632-R) project. Kyunghyun Cho was partly supported by Samsung Advanced Institute of Technology (Next Generation Deep Learning: from pattern recognition to AI) and Samsung Electronics (Improving Deep Learning using Latent Structure).
URI: http://hdl.handle.net/10045/76038
ISBN: 978-84-09-01901-4
Idioma: eng
Tipo: info:eu-repo/semantics/conferenceObject
Derechos: © 2018 The authors. This article is licensed under a Creative Commons 3.0 licence, no derivative works, attribution, CC-BY-ND.
Revisión científica: si
Versión del editor: http://eamt2018.dlsi.ua.es/proceedings-eamt2018.pdf
Aparece en las colecciones:Congresos - EAMT2018 - Proceedings

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailEAMT2018-Proceedings_23.pdf1,52 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons