Density Functional Theory Modeling of Solid-State Nuclear Magnetic Resonances for Polycyclic Aromatic Hydrocarbons

Please use this identifier to cite or link to this item:
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorNuevos Materiales y Catalizadores (MATCAT)es_ES
dc.contributor.authorDiez-Gomez, Virginia-
dc.contributor.authorSobrados, Isabel-
dc.contributor.authorSanz, Jesus-
dc.contributor.authorCarrera, Manuel-
dc.contributor.authorGuijarro, Albert-
dc.contributor.authorVergés Brotons, José Antonio-
dc.contributor.authorAndres, Pedro L. de-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Orgánicaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Síntesis Orgánicaes_ES
dc.identifier.citationThe Journal of Physical Chemistry C. 2018, 122(20): 11008-11014. doi:10.1021/acs.jpcc.8b02340es_ES
dc.identifier.issn1932-7447 (Print)-
dc.identifier.issn1932-7455 (Online)-
dc.description.abstractExperimental solid-state nuclear magnetic resonance (SS-NMR) has been used to analyze different theoretical models for polycyclic aromatic hydrocarbon crystals of similar structure (naphthalene, anthracene, phenanthrene, picene, and triphenylene). We compare the accuracy of four modeling approaches to compute SS-NMR chemical shifts using ab initio density functional theory (DFT). Models based on X-ray cell parameters, on optimization of the cell with the Perdew, Burke, and Ernzerhof (PBE) approximation, and on two methods adding dispersion forces were compared (using Pearson’s and mean absolute deviation correlation factors). Even though the intermolecular distances and cell volumes are different depending on the model, there is an overall good agreement between theoretical and experimental 13C chemical shifts for all of them. An analysis of intermolecular distances and deviation from planarity in different models and their influence on theoretical chemical shieldings is also performed.es_ES
dc.description.sponsorshipWe acknowledge funding from C. Madrid (Grant S2013/MIT-2753), MINECO (Grants MAT2014-54231, MAT2016-78625-C2-2P, MAT2016-78362-C4-2-R, and FIS2015-6422-C2-1-P), EU (Grant ERC-2013-SYG-610256 NANOCOSMOS), Generalitat Valenciana (Grant PROMETEO/2017/139); the University of Alicante and computing resources from CTI-CSIC.es_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© 2018 American Chemical Societyes_ES
dc.subjectSolid-state nuclear magnetic resonancees_ES
dc.subjectDensity functional theoryes_ES
dc.subjectPolycyclic aromatic hydrocarbonses_ES
dc.subject.otherQuímica Orgánicaes_ES
dc.titleDensity Functional Theory Modeling of Solid-State Nuclear Magnetic Resonances for Polycyclic Aromatic Hydrocarbonses_ES
Appears in Collections:INV - MATCAT - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Diez-Gomez_etal_JPhysChemC_final.pdfVersión final (acceso restringido)1,67 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Diez-Gomez_etal_JPhysChemC_accepted.pdfAccepted Manuscript (acceso abierto)1,25 MBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.