Density Functional Theory Modeling of Solid-State Nuclear Magnetic Resonances for Polycyclic Aromatic Hydrocarbons

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/75848
Información del item - Informació de l'item - Item information
Title: Density Functional Theory Modeling of Solid-State Nuclear Magnetic Resonances for Polycyclic Aromatic Hydrocarbons
Authors: Diez-Gomez, Virginia | Sobrados, Isabel | Sanz, Jesus | Carrera, Manuel | Guijarro, Albert | Vergés Brotons, José Antonio | Andres, Pedro L. de
Research Group/s: Nuevos Materiales y Catalizadores (MATCAT)
Center, Department or Service: Universidad de Alicante. Departamento de Química Orgánica | Universidad de Alicante. Instituto Universitario de Síntesis Orgánica
Keywords: Solid-state nuclear magnetic resonance | Density functional theory | Polycyclic aromatic hydrocarbons
Knowledge Area: Química Orgánica
Issue Date: 24-Apr-2018
Publisher: American Chemical Society
Citation: The Journal of Physical Chemistry C. 2018, 122(20): 11008-11014. doi:10.1021/acs.jpcc.8b02340
Abstract: Experimental solid-state nuclear magnetic resonance (SS-NMR) has been used to analyze different theoretical models for polycyclic aromatic hydrocarbon crystals of similar structure (naphthalene, anthracene, phenanthrene, picene, and triphenylene). We compare the accuracy of four modeling approaches to compute SS-NMR chemical shifts using ab initio density functional theory (DFT). Models based on X-ray cell parameters, on optimization of the cell with the Perdew, Burke, and Ernzerhof (PBE) approximation, and on two methods adding dispersion forces were compared (using Pearson’s and mean absolute deviation correlation factors). Even though the intermolecular distances and cell volumes are different depending on the model, there is an overall good agreement between theoretical and experimental 13C chemical shifts for all of them. An analysis of intermolecular distances and deviation from planarity in different models and their influence on theoretical chemical shieldings is also performed.
Sponsor: We acknowledge funding from C. Madrid (Grant S2013/MIT-2753), MINECO (Grants MAT2014-54231, MAT2016-78625-C2-2P, MAT2016-78362-C4-2-R, and FIS2015-6422-C2-1-P), EU (Grant ERC-2013-SYG-610256 NANOCOSMOS), Generalitat Valenciana (Grant PROMETEO/2017/139); the University of Alicante and computing resources from CTI-CSIC.
URI: http://hdl.handle.net/10045/75848
ISSN: 1932-7447 (Print) | 1932-7455 (Online)
DOI: 10.1021/acs.jpcc.8b02340
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 American Chemical Society
Peer Review: si
Publisher version: https://doi.org/10.1021/acs.jpcc.8b02340
Appears in Collections:INV - MATCAT - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Diez-Gomez_etal_JPhysChemC_final.pdfVersión final (acceso restringido)1,67 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Diez-Gomez_etal_JPhysChemC_accepted.pdfAccepted Manuscript (acceso abierto)1,25 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.