Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a ‘black box’ approach and how to avoid them

Please use this identifier to cite or link to this item:
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorEspectroscopía Atómica-Masas y Química Analítica en Condiciones Extremases_ES
dc.contributor.authorSafi, Ali-
dc.contributor.authorCampanella, Beatrice-
dc.contributor.authorGrifoni, Emanuela-
dc.contributor.authorLegnaioli, Stefano-
dc.contributor.authorLorenzetti, Giulia-
dc.contributor.authorPagnotta, Stefano-
dc.contributor.authorPoggialini, Francesco-
dc.contributor.authorRipoll-Seguer, Laura-
dc.contributor.authorHidalgo, Montserrat-
dc.contributor.authorPalleschi, Vincenzo-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Analítica, Nutrición y Bromatologíaes_ES
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Materialeses_ES
dc.identifier.citationSpectrochimica Acta Part B: Atomic Spectroscopy. 2018, 144: 46-54. doi:10.1016/j.sab.2018.03.007es_ES
dc.identifier.issn0584-8547 (Print)-
dc.identifier.issn1873-3565 (Online)-
dc.description.abstractThe introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as ‘black boxes’ whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a ‘black box’ approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.es_ES
dc.rights© 2018 Elsevier B.V.es_ES
dc.subjectCast irones_ES
dc.subjectCalibration curves, Partial Least Squares Analysises_ES
dc.subjectArtificial Neural Networkses_ES
dc.subject.otherQuímica Analíticaes_ES
dc.titleMultivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a ‘black box’ approach and how to avoid themes_ES
Appears in Collections:INV - SP-BG - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Safi_etal_SpectrActaB_final.pdfVersión final (acceso restringido)1,69 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Safi_etal_SpectrActaB_accepted.pdfEmbargo 24 meses (acceso abierto: 18 marzo 2020)1,2 MBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.