Modelling the cross-shore beach profiles of sandy beaches with Posidonia oceanica using artificial neural networks: Murcia (Spain) as study case

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/74511
Información del item - Informació de l'item - Item information
Title: Modelling the cross-shore beach profiles of sandy beaches with Posidonia oceanica using artificial neural networks: Murcia (Spain) as study case
Authors: López Úbeda, Isabel | Aragonés Pomares, Luis | Villacampa, Yolanda | Satorre Cuerda, Rosana
Research Group/s: Ingeniería del Transporte, Territorio y Medio Litoral (AORTA) | Ingeniería del Terreno y sus Estructuras (InTerEs) | Modelización Matemática de Sistemas | Informática Industrial e Inteligencia Artificial
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Civil | Universidad de Alicante. Departamento de Matemática Aplicada | Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial
Keywords: Artificial neural network | Sandy beach | Cross-shore beach profile | Posidonia oceanica
Knowledge Area: Ingeniería e Infraestructura de los Transportes | Matemática Aplicada | Ciencia de la Computación e Inteligencia Artificial
Issue Date: May-2018
Publisher: Elsevier
Citation: Applied Ocean Research. 2018, 74: 205-216. doi:10.1016/j.apor.2018.03.004
Abstract: This paper presents a model of the cross-shore beach profile taking into account the presence of the seagrass Posidonia oceanica whose ultimate objective is to reduce the volume of sand used in beach nourishment. The methodology describes the training, validation, testing and application of models of artificial neural networks (ANN) for computing the cross-shore beach profile of sandy beaches in the province of Murcia (Spain). Eighty ANN models were generated by modifying both the input variables and the number of neurons in the hidden layer. The input variables consist of wave and sediment data and data concerning the Posidonia oceanica. To select and evaluate the performance of the optimal model, the following parameters were used: R2, absolute error, mean absolute percentage error and percentage relative error. The results show a mean absolute error of 0.22 m (0.21 m in training and 0.28 m in test), representing an improvement of 85.1% compared to models that do not use the Posidonia oceanica and 69.8% against those that consider it. Although the ANN was developed for beaches with P.oceanica, it could be used in areas with other seagrass able to reduce wave energy and consolidate the sand such as Syringodium filiforme, Thaalassia testudinum, Laminaria hyperborea, Halodule wrightii and Zostera marina.
Sponsor: This work was partially supported by the Universidad de Alicante through the project “Estudio sobre el perfil de equilibrio y la profundidad de cierre en playas de arena” (GRE15-02).
URI: http://hdl.handle.net/10045/74511
ISSN: 0141-1187 (Print) | 1879-1549 (Online)
DOI: 10.1016/j.apor.2018.03.004
Language: eng
Type: info:eu-repo/semantics/article
Peer Review: si
Publisher version: https://doi.org/10.1016/j.apor.2018.03.004
Appears in Collections:INV - AORTA - Artículos de Revistas
INV - MMS - Artículos de Revistas
INV - i3a - Artículos de Revistas
INV - INTERES - Artículos de Revistas
INV - Smart Learning - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Lopez_etal_ApplOceanRes_final.pdfVersión final (acceso restringido)3,97 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.