Pt-Richcore/Sn-Richsubsurface/Ptskin Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Pt-Richcore/Sn-Richsubsurface/Ptskin Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction
Authors: Rizo, Rubén | Arán-Ais, Rosa M. | Padgett, Elliot | Muller, David A. | Lázaro, María Jesús | Solla-Gullón, José | Feliu, Juan M. | Pastor, Elena | Abruña, Héctor D.
Research Group/s: Electroquímica de Superficies | Electroquímica Aplicada y Electrocatálisis
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Pt-Sn nanocubes | Core-shells | EELS-mapping | Ethanol oxidation reaction | Stability test
Knowledge Area: Química Física
Issue Date: 23-Feb-2018
Publisher: American Chemical Society
Citation: Journal of the American Chemical Society. 2018, 140(10): 3791-3797. doi:10.1021/jacs.8b00588
Abstract: Direct ethanol fuel cells are one of the most promising electrochemical energy conversion devices for portable, mobile and stationary power applications. However, more efficient and stable and less expensive electrocatalysts are still required. Interestingly, the electrochemical performance of the electrocatalysts toward the ethanol oxidation reaction can be remarkably enhanced by exploiting the benefits of structural and compositional sensitivity and control. Here, we describe the synthesis, characterization, and electrochemical behavior of cubic Pt–Sn nanoparticles. The electrochemical activity of the cubic Pt–Sn nanoparticles was found to be about three times higher than that obtained with unshaped Pt–Sn nanoparticles and six times higher than that of Pt nanocubes. In addition, stability tests indicated the electrocatalyst preserves its morphology and remains well-dispersed on the carbon support after 5000 potential cycles, while a cubic (pure) Pt catalyst exhibited severe agglomeration of the nanoparticles after a similar stability testing protocol. A detailed analysis of the elemental distribution in the nanoparticles by STEM-EELS indicated that Sn dissolves from the outer part of the shell after potential cycling, forming a ∼0.5 nm Pt skin. This particular atomic composition profile having a Pt-rich core, a Sn-rich subsurface layer, and a Pt-skin surface structure is responsible for the high activity and stability.
Sponsor: This work has been supported by Fundación Cajacanarias (project BIOGRAF) and the Ministry of Economy and Competitiveness (MINECO) through the projects CTQ2011-28913-C02-02 and ENE2014-52158-C2-2-R (cofunded by FEDER). We acknowledge the SEGAI services of Universidad de La Laguna for important technical assistance, and R.R. acknowledges the funding received from MINECO (EEBB-I-16-11762) to carry out a predoctoral stay in a foreign R&D center. E.P. acknowledges support from an electron microscopy facility supported by the NSF MRSEC program (DMR 1120296) and an NSF MRI grant (DMR 1429155). J.S.G. acknowledges financial support from VITC (Vicerrectorado de Investigación y Transferencia de Conocimiento) of the University of Alicante.
ISSN: 0002-7863 (Print) | 1520-5126 (Online)
DOI: 10.1021/jacs.8b00588
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 American Chemical Society
Peer Review: si
Publisher version:
Appears in Collections:INV - EQSUP - Artículos de Revistas
INV - LEQA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Rizo_etal_JACS_final.pdfVersión final (acceso restringido)4,4 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Rizo_etal_JACS_accepted.pdfAccepted Manuscript (acceso abierto)1,13 MBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.