Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/72733
Información del item - Informació de l'item - Item information
Title: Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors
Authors: Mostazo-López, María José | Ruiz-Rosas, Ramiro | Castro-Muñiz, Alberto | Nishihara, Hirotomo | Kyotani, Takashi | Morallon, Emilia | Cazorla-Amorós, Diego
Research Group/s: Materiales Carbonosos y Medio Ambiente | Electrocatálisis y Electroquímica de Polímeros
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Ultraporous | Nitrogen-doped | Zeolite-templated carbons | High power density | Aqueous-based supercapacitors
Knowledge Area: Química Inorgánica | Química Física
Issue Date: Apr-2018
Publisher: Elsevier
Citation: Carbon. 2018, 129: 510-519. doi:10.1016/j.carbon.2017.12.050
Abstract: Two zeolite templated carbons (ZTC) with comparable structure and different surface chemistry have been synthesized by chemical vapor deposition of different precursors, producing a non-doped and a N-doped carbon material (4 at. % XPS) in which most of the functionalities are quaternary N. A larger specific capacitance (farads per surface area) has been measured in acid electrolyte for the N-doped ZTC, that can be related to an improved wettability due to the presence of nitrogen and oxygen. The capacitance of N-doped ZTC is lower in alkaline electrolyte, probably due to the loss of electrochemical activity of certain oxygen functionalities. Interestingly, the electro-oxidation process of N-ZTC implies lower irreversible currents (providing higher electrochemical stability) than for ZTC. The presence of quaternary nitrogen greatly improves the electric conductivity of N-ZTC, which shows a superior rate performance. ZTC and N-ZTC capacitors were constructed using 1 M H2SO4. Under the same conditions, N-doped ZTC based capacitor has higher energy density, 6.7 vs 5.9 W h/kg. The power density of N-ZTC is four times higher, producing an outstanding maximum power of 98 kW/kg. These results provide clear evidences of the advantages of doping advanced porous carbon materials with nitrogen functionalities.
Sponsor: The authors would like to thank GV and FEDER (PROMETEOII/2014/010), projects CTQ2015-66080-R (MINECO/FEDER) and MAT2016-76595-R (MINECO/FEDER) for financial support. MJML acknowledges Generalitat Valenciana for the financial support through a VALi+d contract (ACIF/2015/374).
URI: http://hdl.handle.net/10045/72733
ISSN: 0008-6223 (Print) | 1873-3891 (Online)
DOI: 10.1016/j.carbon.2017.12.050
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2017 Elsevier Ltd.
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.carbon.2017.12.050
Appears in Collections:INV - GEPE - Artículos de Revistas
INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Mostazo-Lopez_etal_Carbon_final.pdfVersión final (acceso restringido)1,53 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Mostazo-Lopez_etal_Carbon_revised.pdfVersión revisada (acceso abierto)2,04 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.