Multi-objective optimization of combined synthesis gas reforming technologies

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/71008
Información del item - Informació de l'item - Item information
Título: Multi-objective optimization of combined synthesis gas reforming technologies
Autor/es: Medrano, Juan Diego | Ruiz-Femenia, Rubén | Caballero, José A.
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Palabras clave: CO2 utilization | Synthesis gas | Methane reforming | Superstructure decision making | Multi-objective optimization
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: dic-2017
Editor: Elsevier
Cita bibliográfica: Journal of CO2 Utilization. 2017, 22: 355-373. doi:10.1016/j.jcou.2017.09.019
Resumen: Synthesis gas (syngas) is a mixture of H2, CO and occasionally CO2, whose main application is as a building block of chemical compounds. The desired product dictates the syngas characteristics, which are also affected by the employed syngas synthesis technology. In this work, we study the process of producing syngas under desired specifications while consuming CO2 in the synthesis. We propose a superstructure that includes seven reforming technologies for the syngas production, as well as a variety of auxiliary units to control the final composition of the syngas. Each potential solution is assessed, in terms of the economic and environmental performance, by the Total Annualized Cost (TAC) and the Global Warming Potential (GWP) indicator. As the problem statement involves discrete decision, we use disjunctions to model the system. The resulting MINLP multi-objective problem is solved by the epsilon constraint method. Results show that at low syngas H2/CO ratios and pressures, dry methane reforming (DMR) is capable of net consuming CO2. Partial Oxidation (POX) is the technology that exhibits the minimum TAC, although shows the maximum value for the GWP. Synergistic combination of two processes allows reducing the cost and CO2-equivalent emissions through the pairing of DMR and bi-reforming (BR) and BR with steam methane reforming (SMR). Furthermore, increasing the CO2 content in the syngas at a fixed (H2 − CO2)/(CO + CO2) ratio proves that TAC and GWP decrease as the CO2/CO ratio increases.
Patrocinador/es: The authors gratefully acknowledge financial support to the Spanish «Ministerio de Economía, Industria y Competitividad» under project CTQ2016-77968-C3-2-P (AEI/FEDER, UE). The authors would also like to thank «Generalitat Valenciana: Conselleria de Educación, Investigación, Cultura y Deporte» for the Ph.D grant (ACIF/2016/062).
URI: http://hdl.handle.net/10045/71008
ISSN: 2212-9820 (Print) | 2212-9839 (Online)
DOI: 10.1016/j.jcou.2017.09.019
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2017 Elsevier Ltd.
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/j.jcou.2017.09.019
Aparece en las colecciones:INV - CONCEPT - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Medrano-Garcia_etal_JCO2Util_final.pdfVersión final (acceso restringido)3,21 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2017_Medrano-Garcia_etal_JCO2Util_revised.pdfVersión revisada (acceso abierto)2,6 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.