Multi-objective optimization of combined synthesis gas reforming technologies

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/71008
Información del item - Informació de l'item - Item information
Title: Multi-objective optimization of combined synthesis gas reforming technologies
Authors: Medrano, Juan Diego | Ruiz-Femenia, Rubén | Caballero, José A.
Research Group/s: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Keywords: CO2 utilization | Synthesis gas | Methane reforming | Superstructure decision making | Multi-objective optimization
Knowledge Area: Ingeniería Química
Issue Date: Dec-2017
Publisher: Elsevier
Citation: Journal of CO2 Utilization. 2017, 22: 355-373. doi:10.1016/j.jcou.2017.09.019
Abstract: Synthesis gas (syngas) is a mixture of H2, CO and occasionally CO2, whose main application is as a building block of chemical compounds. The desired product dictates the syngas characteristics, which are also affected by the employed syngas synthesis technology. In this work, we study the process of producing syngas under desired specifications while consuming CO2 in the synthesis. We propose a superstructure that includes seven reforming technologies for the syngas production, as well as a variety of auxiliary units to control the final composition of the syngas. Each potential solution is assessed, in terms of the economic and environmental performance, by the Total Annualized Cost (TAC) and the Global Warming Potential (GWP) indicator. As the problem statement involves discrete decision, we use disjunctions to model the system. The resulting MINLP multi-objective problem is solved by the epsilon constraint method. Results show that at low syngas H2/CO ratios and pressures, dry methane reforming (DMR) is capable of net consuming CO2. Partial Oxidation (POX) is the technology that exhibits the minimum TAC, although shows the maximum value for the GWP. Synergistic combination of two processes allows reducing the cost and CO2-equivalent emissions through the pairing of DMR and bi-reforming (BR) and BR with steam methane reforming (SMR). Furthermore, increasing the CO2 content in the syngas at a fixed (H2 − CO2)/(CO + CO2) ratio proves that TAC and GWP decrease as the CO2/CO ratio increases.
Sponsor: The authors gratefully acknowledge financial support to the Spanish «Ministerio de Economía, Industria y Competitividad» under project CTQ2016-77968-C3-2-P (AEI/FEDER, UE). The authors would also like to thank «Generalitat Valenciana: Conselleria de Educación, Investigación, Cultura y Deporte» for the Ph.D grant (ACIF/2016/062).
URI: http://hdl.handle.net/10045/71008
ISSN: 2212-9820 (Print) | 2212-9839 (Online)
DOI: 10.1016/j.jcou.2017.09.019
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2017 Elsevier Ltd.
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.jcou.2017.09.019
Appears in Collections:INV - CONCEPT - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Medrano-Garcia_etal_JCO2Util_final.pdfVersión final (acceso restringido)3,21 MBAdobe PDFOpen    Request a copy
Thumbnail2017_Medrano-Garcia_etal_JCO2Util_revised.pdfEmbargo 24 meses (acceso abierto: 3 nov. 2019)2,6 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.