Fine-tuning of the confined space in microporous metal–organic frameworks for efficient mercury removal

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/70690
Información del item - Informació de l'item - Item information
Título: Fine-tuning of the confined space in microporous metal–organic frameworks for efficient mercury removal
Autor/es: Mon, Marta | Qu, Xiaoni | Ferrando-Soria, Jesús | Pellicer-Carreño, Isaac | Sepúlveda-Escribano, Antonio | Ramos-Fernández, Enrique V. | Jansen, Johannes C. | Armentano, Donatella | Pardo, Emilio
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Metal–organic frameworks | Mercury removal | Aqueous media
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 14-oct-2017
Editor: Royal Society of Chemistry
Cita bibliográfica: Journal of Materials Chemistry A. 2017, 5: 20120-20125. doi:10.1039/c7ta06199d
Resumen: Offsetting the impact of human activities on the biogeochemical cycle of mercury has become necessary for a sustainable planet. Herein, we report the development of a water-stable and eco-friendly metal–organic framework, which has the formula {Cu4II[(S,S)-methox]2}·5H2O (1), where methox is bis[(S)-methionine]oxalyl diamide. Its features include narrow functional channels decorated with thioalkyl chains, which are able to capture HgCl2 from aqueous media in an efficient, selective, and rapid manner. The conscious design effort in terms of size, shape, and reactivity of the channels results in extremely efficient immobilization of HgCl2 guest species in a very stable conformation, similar to that of the enzyme mercury reductase. Thus, 1 enables the highly efficient removal of toxic HgCl2 from aqueous media and reduces the [Hg2+] concentration from the dangerous level of 10 ppm to acceptable limits of below 2 ppb in drinking water. The unusual combination of a low-cost straightforward synthetic procedure and high stability under environmental conditions, together with its ability to efficiently and rapidly remove poisonous mercury ions, places 1 among the most attractive adsorbents reported to date for the purification of contaminated water.
Patrocinador/es: This work was supported by the MINECO (Spain) (Project CTQ2016-75671-P and Excellence Unit “Maria de Maeztu” MDM-2015-0538), the Generalitat Valenciana (Spain) (Project PROMETEOII/2014/070), and the Ministero dell'Istruzione, dell'Università e della Ricerca (Italy). M. M. and X. Q. thank the MINECO and the China Scholarship Council for grants. Thanks are also extended to the Ramón y Cajal program (E. P and E. V. R.-F.).
URI: http://hdl.handle.net/10045/70690
ISSN: 2050-7488 (Print) | 2050-7496 (Online)
DOI: 10.1039/c7ta06199d
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Royal Society of Chemistry 2017
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1039/c7ta06199d
Aparece en las colecciones:INV - LMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Mon_etal_JMaterChemA_final.pdfVersión final (acceso restringido)1,52 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2017_Mon_etal_JMaterChemA_accepted.pdfAccepted Manuscript (acceso abierto)1,7 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.