Multi-Objective Optimization of Renewable Energy-Driven Desalination Systems

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/70021
Información del item - Informació de l'item - Item information
Título: Multi-Objective Optimization of Renewable Energy-Driven Desalination Systems
Autor/es: Onishi, Viviani C. | Ruiz-Femenia, Rubén | Salcedo Díaz, Raquel | Carrero-Parreño, Alba | Reyes-Labarta, Juan A. | Caballero, José A.
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT) | Estudios de Transferencia de Materia y Control de Calidad de Aguas (ETMyCCA)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química
Palabras clave: Multi-objective | Optimization | Zero-liquid discharge | ZLD | Solar energy | Rankine cycle | Life cycle assessment | LCA
Área/s de conocimiento: Ingeniería Química
Fecha de creación: 2-sep-2017
Fecha de publicación: 2-oct-2017
Editor: Elsevier
Cita bibliográfica: Computer Aided Chemical Engineering. 2017, 40: 499-504. doi:10.1016/B978-0-444-63965-3.50085-4
Resumen: Environmental impacts related to increasing greenhouse gas emissions and depletion of fossil-fuel reserves and water resources are major global concerns. In this work, we introduce a new multi-objective optimization model for simultaneous synthesis of zero-emission desalination plants driven by renewable energy. The system is particularly developed for zero-liquid discharge (ZLD) desalination of high-salinity shale gas wastewater, aiming to enhance economic and environmental system performance. The mathematical model is based on a multistage superstructure, which integrates a solar assisted Rankine cycle to a multiple-effect evaporation with mechanical vapor recompression (MEE-MVR) plant. For achieving the goal of more sustainable ZLD process, we specify the discharge brine salinity near to salt saturation conditions. The model is formulated as a multi-objective multiperiod non-linear programming (NLP) problem. The model is implemented in GAMS and solved via epsilon-constraint method, through the minimization of total annualized cost and environmental impacts. The economic objective function accounts for capital cost of investment and operational expenses, while environmental criteria are quantified by the life cycle assessment (LCA)-based ReCiPe methodology. A case study is performed to demonstrate the capabilities of the developed model. The obtained set of trade-off Pareto-optimal solutions reveals that integration of renewable energy generation to ZLD desalination plants can lead to significant cost and environmental savings for shale gas industry.
Descripción: 27th European Symposium on Computer Aided Process Engineering (ESCAPE 27), Barcelona, 1st-5th October, 2017.
Patrocinador/es: European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 640979.
URI: http://hdl.handle.net/10045/70021
ISBN: 978-0-444-64078-9
ISSN: 1570-7946
DOI: 10.1016/B978-0-444-63965-3.50085-4
Idioma: eng
Tipo: info:eu-repo/semantics/conferenceObject
Derechos: Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0
Revisión científica: si
Versión del editor: https://doi.org/10.1016/B978-0-444-63965-3.50085-4
Aparece en las colecciones:INV - CONCEPT - Comunicaciones a Congresos, Conferencias, etc.
Investigaciones financiadas por la UE
INV - ETMyCCA - Comunicaciones a Congresos, Conferencias, etc.

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailPoster_ESCAPE27_3076_MOsolar.pdfPóster1,44 MBAdobe PDFAbrir Vista previa
Thumbnail3076_preprint_ESCAPE27_MO_MEE_ER.pdfPreprint (acceso abierto)258,53 kBAdobe PDFAbrir Vista previa
Thumbnail3076_final_ESCAPE27_MO_MEE_ER.pdfVersión final (acceso restringido)621,7 kBAdobe PDFAbrir    Solicitar una copia


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons