Analysis of multiple haloarchaeal genomes suggests that the quinone-dependent respiratory nitric oxide reductase is an important source of nitrous oxide in hypersaline environments

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/69875
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorBioquímica Aplicada/Applied Biochemistry (AppBiochem)es_ES
dc.contributorBiotecnología de Extremófilos (BIOTECEXTREM)es_ES
dc.contributor.authorTorregrosa-Crespo, Javier-
dc.contributor.authorGonzález-Torres, Pedro-
dc.contributor.authorBautista, Vanesa-
dc.contributor.authorEsclapez Espliego, Julia María-
dc.contributor.authorPire, Carmen-
dc.contributor.authorCamacho, Mónica-
dc.contributor.authorBonete, María-José-
dc.contributor.authorRichardson, David J.-
dc.contributor.authorWatmough, Nicholas J.-
dc.contributor.authorMartínez-Espinosa, Rosa María-
dc.contributor.otherUniversidad de Alicante. Departamento de Agroquímica y Bioquímicaes_ES
dc.date.accessioned2017-10-04T10:55:47Z-
dc.date.available2017-10-04T10:55:47Z-
dc.date.issued2017-09-19-
dc.identifier.citationEnvironmental Microbiology Reports. 2017, 9(6): 788-796. doi:10.1111/1758-2229.12596es_ES
dc.identifier.issn1758-2229-
dc.identifier.urihttp://hdl.handle.net/10045/69875-
dc.description.abstractMicroorganisms, including Bacteria and Archaea, play a key role in denitrification, which is the major mechanism by which fixed nitrogen returns to the atmosphere from soil and water. Whilst the enzymology of denitrification is well understood in Bacteria, the details of the last two reactions in this pathway, which catalyse the reduction of nitric oxide (NO) via nitrous oxide (N2O) to nitrogen (N2), are little studied in Archaea, and hardly at all in haloarchaea. This work describes an extensive interspecies analysis of both complete and draft haloarchaeal genomes aimed at identifying the genes that encode respiratory nitric oxide reductases (Nors). The study revealed that the only nor gene found in haloarchaea is one that encodes a single subunit quinone dependent Nor homologous to the qNor found in bacteria. This surprising discovery is considered in terms of our emerging understanding of haloarchaeal bioenergetics and NO management.es_ES
dc.description.sponsorshipThis work was funded by research grant from the MINECO Spain (CTM2013-43147-R) and Generalitat Valenciana (ACIF 2016/077).es_ES
dc.languageenges_ES
dc.publisherWileyes_ES
dc.rights© John Wiley & Sons, Inc.es_ES
dc.subjectBioinformaticses_ES
dc.subjectDenitrificationes_ES
dc.subjectHaloarchaeaes_ES
dc.subjectHypersaline environmentses_ES
dc.subjectNitric Oxidees_ES
dc.subjectNitrous Oxidees_ES
dc.subjectNitric Oxide Reductasees_ES
dc.subject.otherBioquímica y Biología Moleculares_ES
dc.titleAnalysis of multiple haloarchaeal genomes suggests that the quinone-dependent respiratory nitric oxide reductase is an important source of nitrous oxide in hypersaline environmentses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1111/1758-2229.12596-
dc.relation.publisherversionhttp://dx.doi.org/10.1111/1758-2229.12596es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Appears in Collections:INV - AppBiochem - Artículos de Revistas
INV - BIOTECEXTREM - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Torregrosa-Crespo_etal_EnvironMicrobioRep_accepted.pdfAccepted Manuscript (acceso abierto)1,22 MBAdobe PDFOpen Preview
Thumbnail2017_Torregrosa-Crespo_etal_EnvironMicrobioRep_final.pdfVersión final (acceso restringido)937,19 kBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.